用户名: 密码: 验证码:
可见光催化C(sp~3)-C(sp~3)键的构筑
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:The Formation of C(sp~3)-C(sp~3) by Visible-Light Photocatalysis
  • 作者:易享炎 ; 黄菲 ; Jonathan ; B.Baell ; 黄和 ; 于杨
  • 英文作者:Xiangyan Yi;Fei Huang;Jonathan B.Baell;He Huang;Yang Yu;School of Pharmaceutical Sciences, Nanjing Tech University;School of Environmental and Engineering, Nanjing Tech University;
  • 关键词:可见光催化 ; C—C键 ; 协同催化 ; 不对称催化
  • 英文关键词:visible-light photocatalysis;;C—C bond;;synergistic catalysis;;asymmetric catalysis
  • 中文刊名:HXJZ
  • 英文刊名:Progress in Chemistry
  • 机构:南京工业大学药学院;南京工业大学环境科学与工程学院;
  • 出版日期:2019-04-24
  • 出版单位:化学进展
  • 年:2019
  • 期:v.31;No.228
  • 基金:江苏省先进生物制造创新中心(No.XTE1850,XTC1810);; 江苏高校优秀科技创新团队计划(苏教科[2015]4号文)资助~~
  • 语种:中文;
  • 页:HXJZ201904001
  • 页数:11
  • CN:04
  • ISSN:11-3383/O6
  • 分类号:23-33
摘要
本文对近年来可见光催化构筑C(sp~3)-C(sp~3)键的国内外最新研究成果进行概述,着重阐述了各类催化的催化体系、反应机理及在合成生物活性分子或药物分子方面的应用。在可见光催化的反应体系中引入过渡金属或手性催化剂,构建新颖的协同催化体系,可以实现在温和的条件下对C—C键构筑的精确控制,对于手性药物的设计、开发具有重要的意义。最后,对未来可见光催化构筑C—C键的发展进行展望。
        We summarize the latest results of C(sp~3)-C(sp~3) coupling by visible-light photoredox catalysis in recent years and focus on the catalytic systems, reaction mechanisms and practical applications in synthesizing bioactivity molecules or drug molecules. Indeed, introducing transition metals or chiral catalysts in the visible light-catalyzed reaction system and the constructing of a novel synergistic catalysis system can make the precise formation of the C(sp~3)-C(sp~3) bond under mild conditions become a reality, which will have important implications for the design and development of chiral drugs. Finally, the future development of visible-light photoredox catalysis is prospected.
引文
[1] Lewis N S. Science, 2007, 315: 789.
    [2] Romero N A, Nicewicz D A. Chem. Rev., 2016, 116: 10075.
    [3] Karkas M D, Porco J A, Stephenson C R J. Chem. Rev., 2016, 116: 9683.
    [4] Xie J, Jin H, Ask H. Chem. Soc. Rev., 2017, 46: 5193.
    [5] Prier C K, Rankic D A, MacMillan D W C. Chem. Rev., 2013, 113: 5322.
    [6] Shaw M H, Twilton J, MacMillan D W C. J. Org. Chem., 2016, 81: 6898.
    [7] Zhao Y, Chen J R, Xiao W J. Org Lett., 2018, 20: 224.
    [8] Yu X Y, Zhou Q Q, Wang P Z, Liao C M, Chen J R, Xiao W J. Org. Lett., 2017, 20: 421.
    [9] Liu J, Ding W, Zhou Q Q, Liu D, Lu L Q, Xiao W J. Org Lett., 2017, 20: 461.
    [10] Corcoran E B, Pirnot M T, Lin S, Dreher S D, DiRocco D A, Davies I W, Buchwald S L, MacMillan D W C. Science, 2016, 353: 279.
    [11] Welin E R, Le C, Arias-Rotondo D M, McCusker J K, MacMillan D W C. Science, 2017, 355: 380.
    [12] Murphy J J, Melchiorre P. Nature, 2015, 524: 297.
    [13] Hu X, Zhang G, Bu F, Lei A. ACS Catal., 2017, 7: 1432.
    [14] Fukuzumi S, Kotani H, Ohkubo K, Ogo S, Tkachenko N V, Lemmetyinen H. J. Am. Chem. Soc., 2004, 126: 1600.
    [15] Margrey K A, Levens A, Nicewicz D A. Angew. Chem. Int. Ed., 2017, 56: 15644.
    [16] Roth H, Romero N, Nicewicz D. Synlett, 2015, 27: 714.
    [17] Joshipangu A, Lévesque F, Roth H G, Oliver S F, Campeau L C, Nicewicz D, DiRocco D A. J. Org. Chem., 2016, 81: 7244.
    [18] Fischer H. Chem. Rev., 2001, 101: 3581.
    [19] Studer A. Chem. Soc. Rev., 2004, 33: 267.
    [20] Xuan J, Zeng T T, Chen J R, Lu L Q, Xiao W J. Chem. Eur. J., 2015, 21: 4962.
    [21] Zhou A X, Mao L L, Wang G W, Yang S D. Chem. Commun., 2014, 50: 8529.
    [22] He R, Huang Z T, Zheng Q Y, Wang C. Angew. Chem. Int. Ed., 2014, 53: 4950.
    [23] Hu X, Zhang G, Bu F, Lei A. Angew. Chem. Int. Ed., 2017, 57: 1286.
    [24] Margrey K A, McManus J B, Bonazzi S, Zecri F, Nicewicz D A. J. Am. Chem. Soc., 2017, 139: 11288.
    [25] Terrett J A, Cuthbertson J D, Shurtleff V W, MacMillan D W C. Nature, 2015, 524: 330.
    [26] Ventre S, Petronijevic F R, MacMillan D W C. J. Am. Chem. Soc., 2015, 137: 5654.
    [27] Yue H, Zhu C, Rueping M. Angew. Chem. Int. Ed., 2018, 57: 1371.
    [28] Zhang G, Liu C, Yi H, Meng Q, Bian C, Chen H, Jian J X, Wu L Z, Lei A. J. Am. Chem. Soc., 2015, 137: 9273.
    [29] Du J, Skubi K L, Schultz D M, Yoon T P. Science, 2014, 344: 392.
    [30] Cismesia M A, Yoon T P. Chem. Sci., 2015, 6: 5426.
    [31] Yu X Y, Chen J R, Wang P Z, Yang M N, Liang D, Xiao W J. Angew. Chem. Int. Ed., 2018, 57: 738.
    [32] Chu L, Ohta C, Zuo Z, MacMillan D W C. J. Am. Chem. Soc., 2014, 136: 10886.
    [33] Nawrat C C, Jamison C R, Slutskyy Y, MacMillan D W C, Overman L E. J. Am. Chem. Soc., 2015, 137: 11270.
    [34] Johnston C P, Smith R T, Allmendinger S, MacMillan D W C. Nature, 2016, 536: 322.
    [35] Terao J, Watanabe H, Ikumi A, Kuniyasu H, Kambe N. J. Am. Chem. Soc., 2002, 12: 4222.
    [36] Saito B, Fu G C. J. Am. Chem. Soc., 2007, 38: 9602.
    [37] McCarver S J, Qiao J X, Carpenter J, Borzilleri R M, Poss M A, Eastgate M D, Miller M M, MacMillan D W C. Angew. Chem. Int. Ed., 2017, 56: 728.
    [38] Hu C C, Chen Y. Org. Chem. Front., 2015, 2: 1352.
    [39] Hager D, MacMillan D W C. J. Am. Chem. Soc., 2014, 136: 16986.
    [40] Jeffrey J L, PetronijeviDc' F R, MacMillan D W C. J. Am. Chem. Soc., 2015, 137: 8404.
    [41] Eklund H, Uhlin U, F?rneg?rdh M, Logan D T, Nordlund P. Prog. Biophys. Mol. Biol., 2001, 77: 177.
    [42] Wessig P, Muehling O. Eur. J. Org. Chem., 2007, 2007: 2219.
    [43] Dryzhakov M, Richmond E, Moran J. Synthesis, 2016, 48: 935.
    [44] Nacsa E D, MacMillan D W C. J. Am. Chem. Soc., 2018, 140: 3322.
    [45] Dubroeucq M C, Bénavidès J, Doble A, Guilloux F, Allam D, Vaucher N, Bertrand P, Guérémy C, Renault C, Uzan A, Le Fur G. Eur. J. Pharmacol., 1986, 128: 269.
    [46] Espelt L R, McPherson I S, Wiensch E M, Yoon T P. J. Am. Chem. Soc., 2015, 137: 2452.
    [47] Hepburn H B, Melchiorre P. Chem. Commun., 2016, 52: 3520.
    [48] Bergonzini G, Melchiorre P. Angew. Chem. Int. Ed., 2012, 51: 971.
    [49] Tian X, Liu Y, Melchiorre P. Angew. Chem. Int. Ed., 2012, 51: 6439.
    [50] Moran A, Hamilton A, Bo C P, Melchiorre P. J. Am. Chem. Soc., 2013, 135: 9091.
    [51] Silvi M, Chatterjee I, Liu Y, Melchiorre P. Angew. Chem. Int. Ed., 2013, 52: 10780.
    [52] Ahrendt K A, Borths C J, MacMillan D W C. J. Am. Chem. Soc., 2000, 122: 4243.
    [53] Zhang J, Li Y, Zhang F, Hu C, Chen Y. Angew. Chem. Int. Ed., 2016, 55: 1872.
    [54] Qi L, Chen Y. Angew. Chem. Int. Ed., 2016, 55: 13312.
    [55] Huo H, Shen X, Wang C, Zhang L, R?se P, Chen L A, Harms K, Marsch M, Hilt G, Meggers E. Nature, 2014, 515: 100.
    [56] Wang C, Qin J, Shen X, Riedel R, Harms K, Meggers E. Angew. Chem. Int. Ed., 2016, 55: 685.
    [57] Ma J, Harms K, Meggers E. Chem. Commun., 2016, 52: 10183.
    [58] Huo H, Harms K, Meggers E. J. Am. Chem. Soc., 2016, 138: 6936.
    [59] Wang C, Harms K, Meggers E. Angew. Chem. Int. Ed., 2016, 55: 13495.
    [60] Nakajima M, Lefebvre Q, Rueping M. Chem. Commun., 2014, 50: 3619.
    [61] Millet A, Lefebvre Q, Rueping M. Chem. Eur. J., 2016, 22: 13464.
    [62] Cardona F, Goti A. Nat. Chem., 2009, 1: 269.
    [63] Liu X, Gao A, Ding L, Xu J, Zhao B. Org. Lett., 2014, 16: 2118.
    [64] Olson D E, Su J Y, Roberts D A, Du Bois J. J. Am. Chem. Soc., 2014, 136: 13506.
    [65] Fava E, Millet A, Nakajima M, Loescher B S, Rueping P. Angew. Chem. Int. Ed., 2016, 55: 6776.
    [66] Xuan J, Feng Z J, Chen J R, Lu L Q, Xiao W J. Chem. Eur. J., 2014, 20: 3045.
    [67] Zhou W J, Cao G M, Shen G, Zhu X Y, Gui Y Y, Ye H, Sun L, Liao L L, Li J, Yu D G. Angew. Chem. Int. Ed., 2017, 56: 15683.
    [68] Evans D A, Weber A E. J. Am. Chem. Soc., 1986, 108: 6757.
    [69] Wu F, Wang L, Chen J, Nicewicz D A, Huang Y. Angew. Chem. Int. Ed., 2018, 57: 2174.
    [70] Silvi M, Verrier C, Rey Y P, Buzzetti L, Melchiorre P. Nat. Chem., 2017, 9: 868.
    [71] Bahamonde A, Melchiorre P. J. Am. Chem. Soc., 2016, 138: 8019.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700