用户名: 密码: 验证码:
pH值对海水中TMCP X80钢氢脆敏感性影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of pH Value on Hydrogen Embrittlement of TMCP X80 Steel in Seawater
  • 作者:李平 ; 耿烟茗 ; 胡茹萌 ; 郭为民 ; 彭文山 ; 杜敏 ; 蔺存国
  • 英文作者:LI Ping;GENG Yanming;HU Rumeng;GUO Weimin;PENG Wenshan;DU Min;LIN Cunguo;Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China;State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute;
  • 关键词:X80钢 ; 氢渗透 ; 氢脆 ; 阴极极化 ; pH值 ; 海水
  • 英文关键词:X80 steel;;hydrogen permeation;;hydrogen embitterment;;cathodic polarization;;pH;;seawater
  • 中文刊名:FSFJ
  • 英文刊名:Corrosion Science and Protection Technology
  • 机构:中国海洋大学化学化工学院海洋化学理论与工程技术教育部重点实验室;中国船舶重工集团公司第七二五研究所海洋腐蚀与防护重点实验室;
  • 出版日期:2019-07-15
  • 出版单位:腐蚀科学与防护技术
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金(U1706221)~~
  • 语种:中文;
  • 页:FSFJ201904003
  • 页数:9
  • CN:04
  • ISSN:21-1264/TQ
  • 分类号:19-27
摘要
采用氢渗透实验法、动电位极化法研究TMCP X80管线钢在不同pH值海水中的氢渗透行为,结合扫描电镜(SEM)观察研究显微组织及氢渗透行为对氢脆敏感性的影响。结果表明,随着海水pH值的减小,析氢电位发生正移。天然海水和酸性海水中氢扩散系数随着极化电位负移而增加;极化电流密度越大,氢扩散系数和氢浓度越大。在负于析氢电位时,显微形貌显示出明显的蚀坑和氢鼓泡,酸性海水中更严重。随着海水pH值的减小及外加阴极极化电位负移,氢扩散到材料内部的量更大;充氢电流密度增加也促进氢的扩散,X80钢氢脆敏感性增加。
        The effect of pH value on hydrogen embrittlement of TMCP X80 pipeline steel in seawater was studied by applying cathodic protection with different potential and current density via potentiodynamic polarization method, Devanathan-Stachurski bipolar cell electrochemical test and SEM observation. Results showed that the hydrogen evolution potentials were-940 mV(vs SCE) in natural seawater and-900 mV(vs SCE) in acid seawater with pH of 3.5 respectively. Hydrogen diffusion coefficients in natural seawater and acid seawater all increased with the increasing negative shift of polarization potential.But the hydrogen concentration in acid seawater was higher than that in natural seawater. Bigger polarization current density was, higher hydrogen diffusion coefficient and hydrogen concentration were. SEM observation revealed that obvious corrosion pits and hydrogen bubble could be seen when potential was more negative than that of the hydrogen evolution potential and which became more serious in acid seawater. With the decreasing pH of seawater and increasing negative-shift of polarization potential, more hydrogen was diffuse to the inner of the material. The bigger charging current density promoted the hydrogen diffusion, thereby, increased the hydrogen embitterment susceptibility of X80 steel.
引文
[1]Yuan W.Latest developments in microstructure control technology with thermomechanical control technology(TMCP)[J].China Steel Focus,2008,(9):54(袁文.借助热机械控制工艺(TMCP)的显微结构控制技术最新发展[J].冶金管理,2008,(9):54)
    [2]Wang G D.Practice and industry applications for the new generation TMCP[J].Shanghai Met.,2008,30(3):1(王国栋.新一代TMCP的实践和工业应用举例[J].上海金属,2008,30(3):1)
    [3]Yu Y,Cai W G,Liu Y Z,et al.Study on anti-hydrogen-permeation of TMCP X80 welded steel[J].Period.Ocean Univ.China,2011,41(7/8):131(虞毅,蔡文刚,刘永贞等.TMCPX80管线钢焊接件耐氢渗透研究[J].中国海洋大学学报,2011,41(7/8):131)
    [4]Husby H,Iannuzzi M,Johnsen R,et al.Effect of nickel on hydrogen permeation in ferritic/pearlitic low alloy steels[J].Int.J.Hydrogen Energy,2018,43:3845
    [5]Zhao W M,Zhang T M,Zhao Y J,et al.Hydrogen permeation and embrittlement susceptibility of X80 welded joint under high-pressure coal gas environment[J].Corros.Sci.,2016,111:84
    [6]Zhang T M,Zhao W M,Zhao Y J,et al.Effects of surface oxide films on hydrogen permeation and susceptibility to embrittlement of X80 steel under hydrogen atmosphere[J].Int.J.Hydrogen Energy,2018,43:3353
    [7]Garcia D C S,Carvalho R N,Lins V F C,et al.Influence of microstructure in the hydrogen permeation in martensitic-ferritic stainless steel[J].Int.J.Hydrogen Energy,2015,40:17102
    [8]Koyama M,Yamasaki D,Nagashima T,et al.In situ observations of silver-decoration evolution under hydrogen permeation:Effects of grain boundary misorientation on hydrogen flux in pure iron[J].Scr.Mater.,2017,129:48
    [9]Wu T Q,Yan M C,Zeng D C,et al.Hydrogen permeation of X80steel with superficial stress in the presence of sulfate-reducing bacteria[J].Corros.Sci.,2015,91:86
    [10]Zhang L,Shen H J,Sun J Y,et al.Effect of calcareous deposits on hydrogen permeation in X80 steel under cathodic protection[J].Mater.Chem.Phys.,2018,207:123
    [11]Liu Y,Li Y,Li Q.Effect of cathodic polarization on hydrogen embrittlement susceptibility of X80 pipeline steel in simulated deep sea environment[J].Acta Metall.Sin.,2013,49:1089(刘玉,李焰,李强.阴极极化对X80管线钢在模拟深海条件下氢脆敏感性的影响[J].金属学报,2013,49:1089)
    [12]Zhang L,Cao W H,Lu K D,et al.Effect of the cathodic current density on the sub-surface concentration of hydrogen in X80 pipeline steels under cathodic protection[J].Int.J.Hydrogen Energy,2017,42:3389
    [13]Turnbull A,de Santa Maria M S,Thomas N D.The effect of H2Sconcentration and pH on hydrogen permeation in AISI 410 stainless steel in 5%NaCl[J].Corros.Sci.,1989,29:89
    [14]Bilmes P D,Solar M,Lorente C L.Characteristics and effects of austenite resulting from tempering of 13Cr-NiMo martensitic steel weld metals[J].Mater.Charact.,2001,46:285
    [15]Olden V,Thaulow C,Johnsen R.Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J].Mater.Des.,2008,29:1934
    [16]Zhang T M,Zhao W M,Li T M,et al.Comparison of hydrogen embrittlement susceptibility of three cathodic protected subsea pipeline steels from a point of view of hydrogen permeation[J].Corros.Sci.,2018,131:104
    [17]Thomason W H.Quantitative measurement of hydrogen charging rates into steel surfaces exposed to seawater under varying cathodic protection levels[J].Mater.Perform.,1988,27:63
    [18]Devanathan M A V,Stachurski Z,Beck W.A technique for the evaluation of hydrogen embrittlement characteristics of electroplating baths[J].J.Electrochem.Soc.,1963,110:886
    [19]Zhang D L,Li Y.Hydrogen permeation of hot-dip galvanized steel exposed to simulated marine atmosphere[J].Chin.J.Mater.Res.,2009,23:592(张大磊,李焰.热镀锌钢材在海洋大气环境中的氢渗透行为[J].材料研究学报,2009,23:592)
    [20]Refait P,Jeannin M,Sabot R,et al.Electrochemical formation and transformation of corrosion products on carbon steel under cathodic protection in seawater[J].Corros.Sci.,2013,71:32
    [21]ISO.ISO 17081:2004 Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique[S].Switzerland:ISO,2004
    [22]Haq A J,Muzaka K,Dunne D P,et al.Effect of microstructure and composition on hydrogen permeation in X70 pipeline steels[J].Int.J.Hydrogen Energy,2013,38:2544
    [23]Hu R M,Du M.Effects of cathodic polarization on stress corrosion cracking and hydrogen embrittlement of X80 steel in seawater[J].Equip.Environ.Eng.,2018,15(3):1(胡茹萌,杜敏.海水中阴极极化对X80钢应力腐蚀及氢脆敏感性的影响[J].装备环境工程,2018,15(3):1)
    [24]Li M,Li X G,Chen G,et al.Influencing factors of hydrogen diffusion in hydrogen sulfide environment[J].J.Univ.Sci.Technol.Beijing,2007,29:39(李明,李晓刚,陈钢等.硫化氢环境下氢扩散的影响因素[J].北京科技大学学报,2007,29:39)
    [25]Zhang L,Du M,Li Y.Effects of applied potentials on the hydrogen-induced cracking of pipeline steel in low-temperature and lowdissolved-oxygen seawater[J].Corrosion,2012,68:713
    [26]Wu H.Hydrogen permeation analysis of X52 steel in H2S/CO2environment and its effect on hydrogen induced cracking[D].Nanchong:Southwest Petroleum University,2014(吴辉.H2S/CO2环境中X52钢氢渗透分析及对氢致开裂的影响[D].南充:西南石油大学,2014)
    [27]Zhang Z,Farrar R A.Role of non-metallic inclusions in formation of acicular ferrite in low alloy weld metals[J].Mater.Sci.Technol.,1996,12:237
    [28]Madariaga I,Gutiérrez I.Role of the particle-matrix interface on the nucleation of acicular ferrite in a medium carbon microalloyed steel[J].Acta Mater.,1999,47:951
    [29]Chu W Y,Qiao L J,Li J X,et al.Hydrogen Embrittlement and Stress Corrosion Cracking[M].Beijing:Science Press,2013(褚武扬,乔利杰,李金许等.氢脆和应力腐蚀-典型体系[M].北京:科学出版社,2013)
    [30]Huang F,Liu J,Deng Z J,et al.Effect of microstructure and inclusions on hydrogen induced cracking susceptibility and hydrogen trapping efficiency of X120 pipeline steel[J].Mater.Sci.Eng.,2010,527A:6997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700