用户名: 密码: 验证码:
南海北部冷泉平端深海偏顶蛤的主要生化成分及其与热液和近岸种的对比研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biochemical components of cold seep mussel Bathymodiolus platifrons from South China Sea and comparison with hydrothermal vent and offshore mussels
  • 作者:郭欣雨 ; 李超伦
  • 英文作者:GUO Xin-yu;LI Chao-lun;CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:平端深海偏顶蛤 ; 生化成分 ; 冷泉 ; 南海
  • 英文关键词:Bathymodiolus platifrons;;biochemical composition;;cold seep;;the South China Sea
  • 中文刊名:HYKX
  • 英文刊名:Marine Sciences
  • 机构:中国科学院海洋生态与环境科学重点实验室中国科学院海洋研究所;中国科学院大学;
  • 出版日期:2017-06-15
  • 出版单位:海洋科学
  • 年:2017
  • 期:v.41;No.336
  • 基金:中国科学院战略性先导科技专项(XDA11030202);中国科学院国际创新团队项目(20140491526);; 科技基础资源调查专项(2017FY100803)~~
  • 语种:中文;
  • 页:HYKX201706010
  • 页数:7
  • CN:06
  • ISSN:37-1151/P
  • 分类号:67-73
摘要
Bathymodiolus属贻贝是广泛分布于全球深海冷泉和热液生态系统的优势种,在深海化能生态系统的物质循环和能量流动中起着重要作用。本文以我国南海北部冷泉的主要优势种平端深海偏顶蛤(Bathymodiolus platifrons)为研究对象,采用常规生化测定方法,研究了其主要生化成分和氨基酸组成的特征,并就特定组织中主要生化成分的含量与生活在热液区的平端深海偏顶蛤和近岸的远东偏顶蛤(Modiolus kurilensis)进行了对比。结果表明,南海冷泉平端深海偏顶蛤软体部含水量84.28%,粗蛋白含量7.18%,粗脂肪含量1.23%,糖类含量2.75%,与已报道的深海贝类组成相近。虽然主要生化成分含量在3种贻贝的鳃、外套膜、闭壳肌和消化腺4个组织中总体差异不大,但是冷泉平端深海偏顶蛤和热液平端深海偏顶蛤的外套膜糖类含量(25.20%、30.66%)显著高于远东偏顶蛤(6.97%,P<0.05),这表明平端深海偏顶蛤的主要储存物质为外套膜中的糖类。在氨基酸组成上,冷泉平端深海偏顶蛤鳃中氨基酸总量为44.55%(干质量),外套膜中为34.83%(干质量),其中必需氨基酸分别占比41.73%和40.52%,总体与其他贝类相似。然而,在平端深海偏顶蛤中,与渗透压调节相关的甘氨酸和与硫代谢相关的牛磺酸含量较高,这与其适应深海高盐度高硫化氢浓度的环境相关。综上所述,南海冷泉平端深海偏顶蛤在常规生化组分和氨基酸组成上与近岸常见双壳类具有一定差异,这些差异与其特殊生境的关系还需要更加深入的研究。
        Bathymodiolin mussels are a key species in cold seep and hydrothermal vent ecosystems where they are widely distributed and play an important role in the material cycle and energy flow of deep-sea chemotrophic ecosystems. In this paper, conventional biochemical determination methods are used to determine the fundamental biochemical components of Bathymodiolus platifrons in a South China Sea cold seep. Differences between mussels found at cold seeps, hydrothermal vents, and the offshore mussel Modiolus kurilensis are also discussed. Proportions of water, crude protein, lipids, and glycogen in B. platifrons are 84.28, 7.18, 1.23, and 2.75%, respectively, which are similar to those reported in deep-sea mussels. The glycogen content in the mantle of cold seep B. platifrons(25.20%) is significantly higher than that of M. kurilensis(6.97%)(P < 0.05), but is close to that of hydrothermal vent B. platifrons(30.66%), indicating that glycogen stored in the mantle is the energy reserve of B. platifrons. The total amino acid content in the gill and mantle of seep B. platifrons is 44.55 and 34.83% of dry weight, in which the essential amino acid content accounts for 41.73 and 40.52%, respectively. However, the contents of glycine and taurine are higher than in offshore bivalves. These compounds are related to osmoregulation and sulfur metabolism and may thus indicate environmental adaption. Results show certain differences between the biochemical component content of the SCS cold seep B. platifrons and offshore mussels; however, the relationship with special habitats needs further research.
引文
[1]Myriam S,Karine O.Biogeography,biodiversity and fluid dependence of deep-sea cold-seep communities at active and passive margins[J].Deep-Sea Research Part II:Topical Studies in Oceanography,1998,45(1-3):517-567.
    [2]Brooks J M,Kennicutt M C,Fay RR,et al.Thermogenic gas hydrates in the gulf of Mexico[J].Science,1984,225(4660):409-411.
    [3]Russell C W,Powell E N.Why did ancient chemosynthetic seep and vent assemblages occur in shallower water than they do today?[J].Int Journ Earth Sciences,1999,88(3):377-391.
    [4]James J C,Fisher C R,Brooks J M,et al.A methanotrophic marine molluscan(bivalvia,mytilidae)symbiosis:mussels fueled by gas[J].Science,1986,233(4770):1306-1308.
    [5]Kochevar R E,Childress J J,Fisher C R,et al.The methane mussel:roles of symbiont and host in the metabolic utilization of methane[J].Marine Biology,1992,112:389-401.
    [6]James M B,Kennicutt II M C,Fisher C R,et al.Deep-sea hydrocarbon seep communities:evidence for energy and nutritional carbon sources[J].Science,1987,238(4830):1138-1142.
    [7]Fisher C R,Childress J J,Orem Land R S,et al.The importance of methane and thiosulfate in the metabolism of the bacterial symbionts of two deep-sea mussels[J].Marine Biology,1987,96:59-71.
    [8]J?rgensen C B.Bivalve filter feeding:hydrodynamics,bioenergetics,physiology and ecology[M].Olsen&Olsen,1990.
    [9]Kathleen M S,Chalers R F.Physiological ecology of sulfide metabolism in hydrothermal vent and cold seep vesicomyid clams and vestimentiferan tube worms[J].American Zoologist,1995,35(2):102-111.
    [10]Von Damm K L,Buttermore L G,Oosting S E,et al.Direct observation of the evolution of a seafloor‘black smoker’from vapor to brine[J].Earth and Planetary Science Letters,1997,149:101-111.
    [11]Hiroaki S.Unusual novel n-4 polyunsaturated fatty acids in cold-seep mussels(Bathymodiolus japonicus and Bathymodiolus platifrons),originating from symbiotic methanotrophic bacteria[J].Journal of Chromatography A,2008,1200(2):242-254.
    [12]Hiroaki S,Kazufumi O.Confirmation of a new food chain utilizing geothermal energy:Unusual fatty acids of a deep-sea bivalve,Calyptogena phaseoliformis[J].Limnology and Oceanography,2007,52(5):1910-1918.
    [13]Hiroaki S,Masakazu M,Jun H.Lipid characteristics of a seep clam,Mesolinga soliditesta:Comparison with those of two coastal clams,Meretrix lamarckii and Ruditapes philippinarum[J].Deep-Sea Research Part I:Oceanographic Research Papers,2014,94:150-158.
    [14]Pranal V,Fiala-Médioni A,Colomines J C.Amino acid and related compound composition in two symbiotic mytilid species from hydrothermal vents[J].Marine Ecology Progress Series,1995,119(1-3):155-166.
    [15]Pruski A M,Fiala-Médioni A,Fisher C R,et al.Composition of free amino acids and related compounds in invertebrates with symbiotic bacteria at hydrocarbon seeps in the Gulf of Mexico[J].Marine Biology,2000,136(3):411-420.
    [16]Gerhard K,Holger S G F.Simple gas-liquid chromatographic method for the simultaneous determination of fatty acids and alcohols in wax esters of marine organisms[J].Journal of Chromatography,1986,361(1986):263-268.
    [17]Smith K L.Deep-sea hydrothermal vent mussels:nutritional state and distribution at the Galapagos Rift[J].Ecology,1985,66(3):1067-1080.
    [18]Sedat K,Meryem Y?,?smihan K,et al.Effects of stocking density on survival,growth and biochemical composition of cultured mussels(Mytilus galloprovincialis,Lamarck 1819)from an offshore submerged longline system[J].Aquaculture Research,2015,46(6):1369-1383.
    [19]庆宁,林岳光,金启增.翡翠贻贝软体部营养成分的研究[J].热带海洋,2000,19(1):81-84.Qing Ning,Lin Yue-guang,Jin Qi-zeng.Studies on nutritive compositions of soft part in mussel Perna viridis[J].Tropic Oceanology,2000,19(1):81-84.
    [20]Sefa A,Aynur L,Ali K,et al.Seasonal variation in reproductive activity and biochemical composition of flat oyster(Ostrea edulis)in the Homa Lagoon,Izmir Bay,Turkey[J].Scientia Marina,2015,79(4):487-495.
    [21]李晓英,董志国,阎斌伦,等.青蛤与文蛤的营养成分分析与评价.食品科学,2010,31(23):366-370.Li Xiao-ying,Dong Zhi-guo,Yan Bin-lun,et al.Analysis and evaluation of nutritional components in Cyclina sinensis and Meretrix meretrix[J].Food Science,2010,31(23):366-370.
    [22]Meryem Y C,Saniye T?,Mehmet?,et al.Comparative study on biochemical composition of some edible marine molluscs at Canakkale coasts,Turkey[J].Indian Journal of Geo-Marine Sciences,2014,43(4):601-606.
    [23]Babu A,Venkatesan V,Rajagopal S.Biochemical composition of different body parts of Gafrarium tumidum(Roding,1798)from Mandapam,South East Coast of India[J].African Journal of Biotechnology,2012,11(7):1700-1704.
    [24]Bi J H,Li Q,Zhang X J,et al.Seasonal variation of biochemical components in clam(Saxidomus purpuratus Sowerby 1852)in relation to its reproductive cycle and the environmental condition of Sanggou Bay,China[J].Journal of Ocean University of China,2016,15(2):341-350.
    [25]de Zwaan A,Zandee D I.Body distribution and seasonal changes in the glycogen content of the common sea mussel Mytilus edulis[J].Comparative Biochemistry and Physiology Part A:Physiology,1972,43(1):53-58.
    [26]Zandee D I,Kluytmans J H,Zurburg W.Seasonal variations in biochemical composition of Mytilus edulis with reference to energy metabolism and gametogenesis[J].Netherlands Journal of Sea Research,1980,14(1):1-29.
    [27]Emily B S,Kathleen M St,Erica R N,et al.Growth and condition of seep mussels(Bathymodiolus childressi)at a gulf of Mexico Brine Pool[J].Ecology,2000,81(9):2392-2403.
    [28]Tabakaeva O V,Tabakaev A V.Amino-acid profile of a mactridae bivalve mollusk from the Sea of Japan[J].Chemistry of Natural Compounds,2016,52(5):966-968.
    [29]Tabakaeva O V,Tabakaev A V.Amino-acid composition of soft tissues of the Far-East bivalve mollusk Anadara broughtonii[J].Chemistry of Natural Compounds,2016,52(3):468-471.
    [30]Chen D W,Su J,Liu X L,et al.Amino acid profiles of bvalve mollusks from Beibu Gulf,China[J].Journal of Aquatic Food Product Technology,2012,21(4):369-379.
    [31]Page H M,Fisher C R,Childress J J.Role of filter-feeding in the nutritional biology of a deep-sea mussel with methanotrophic symbionts[J].Marine Biology,1990,104:251-257.
    [32]Lehman L E,James M B,Kennedy T P,et al.Amino acid metabolism in euryhaline bivalves:regulation of glycine accumulation in ribbed mussel gills[J].The Journal of Experimental Zoology,1985,233(3):347-358.
    [33]Audrey M P,Aline F M,Jean-Charles C.High amounts of sulphur-amino acids in three symbiotic mytilid bivalves from deep benthic communities[J].Animal biology and pathology,1997,320(10):791-796.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700