用户名: 密码: 验证码:
Welding solidification cracking susceptibility and behavior of a Ni-28W-6Cr alloy
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Welding solidification cracking susceptibility and behavior of a Ni-28W-6Cr alloy
  • 作者:Shuangjian ; Chen ; Xiang-Xi ; Ye ; D.K.L.Tsang ; Li ; Jiang ; Kun ; Yu ; Chaowen ; Li ; Zhijun ; Li
  • 英文作者:Shuangjian Chen;Xiang-Xi Ye;D.K.L.Tsang;Li Jiang;Kun Yu;Chaowen Li;Zhijun Li;Center for Thorium Molten Salts Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences;
  • 英文关键词:Welding solidification cracking;;susceptibility;;Ni-W-Cr alloy;;Chemical composition;;Grain boundaries
  • 中文刊名:CLKJ
  • 英文刊名:材料科学技术(英文版)
  • 机构:Center for Thorium Molten Salts Reactor System, Shanghai Institute of Applied Physics, Chinese Academy of Sciences;
  • 出版日期:2019-01-15
  • 出版单位:Journal of Materials Science & Technology
  • 年:2019
  • 期:v.35
  • 基金:supported by the National Key Research and Development Program of China(Grant No.2016YFB0700404);; the National Natural Science Foundation of China(Grant Nos.51601213and 51501216);; the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA02004210);; the Talent development fund of Shanghai(Grant No.201650)
  • 语种:英文;
  • 页:CLKJ201901005
  • 页数:7
  • CN:01
  • ISSN:21-1315/TG
  • 分类号:31-37
摘要
Welding solidification cracking of alloys is associated with the range of solidification temperature that can be greatly affected by the amount of refractory metals and other additives. In this work, solidification cracking of Ni-28W-6Cr alloy with high W content was studied by gas tungsten arc welding, showing that the welding current, alloying elements and precipitates all affect the cracking susceptibility. The lengths of cracks increase linearly with the welding current in the range from 150 to 250 A. The relatively high cracking susceptibility is mainly attributed to the high content of Si, which tends to segregate with other elements including W, Cr, Mn as films or components with low melting point in the last solidification stage and weaken the binding force of grain boundaries. Moreover, the existence of precipitated continuous eutectic M_6C carbides in the grain boundaries also acts as nucleation sites of crack initiation, and the cracks often propagate along solidification grain boundary.
        Welding solidification cracking of alloys is associated with the range of solidification temperature that can be greatly affected by the amount of refractory metals and other additives. In this work, solidification cracking of Ni-28W-6Cr alloy with high W content was studied by gas tungsten arc welding, showing that the welding current, alloying elements and precipitates all affect the cracking susceptibility. The lengths of cracks increase linearly with the welding current in the range from 150 to 250 A. The relatively high cracking susceptibility is mainly attributed to the high content of Si, which tends to segregate with other elements including W, Cr, Mn as films or components with low melting point in the last solidification stage and weaken the binding force of grain boundaries. Moreover, the existence of precipitated continuous eutectic M_6C carbides in the grain boundaries also acts as nucleation sites of crack initiation, and the cracks often propagate along solidification grain boundary.
引文
[1]K.Yu,Z.Jiang,C.Li,S.Chen,T.Wang,X.Zhou,Z.Li,J.Mater.Sci.Technol.11(2017)1289-1299.
    [2]R.Dong,J.Li,T.Zhang,R.Hu,H.Kou,Mater.Charact.122(2016)189-196.
    [3]H.J.Lee,H.Kim,D.Kim,C.Jang,Mater.Character.106(2015)283-291.
    [4]H.Alimadadi,M.Ahmadi,M.Aliofkhazraei,S.R.Younesi,Mater.Des.30(2009)1356-1361.
    [5]A.Genc?,M.L.?vec?o?glu,M.Baydo?gan,S.Turan,Mater.Des.42(2012)495-504.
    [6]L.Zhang,Y.Jin,B.Peng,Y.Zhang,X.Wang,Q.Yang,J.Yu,Appl.Surf.Sci.255(2008)1686-1691.
    [7]J.M.Doh,K.K.Yoo,H.K.Baik,C.Ju,S.K.Hur,Scr.Mater.34(1996)537-542.
    [8]R.C.Reed,The Superalloys:Fundamentals and Applications,Cambridge University Press,U.S,2006,pp.34-35.
    [9]A.K.Jena,M.C.Chaturvedi,J.Mater.Sci.19(1984)3121-3139.
    [10]S.Liu,X.X.Ye,L.Jiang,C.Cui,Z.Li,H.Huang,B.Leng,X.Zhou,Mater.Sci.Eng.A 655(2016)269-276.
    [11]S.Delpech,E.Merle-Lucotte,T.Auger,X.Doligez,D.Heuer,G.S.Picard,Paris,France,September 9-10Proceedings of the GIF Symposium2009,Proceedings of the GIF Symposium(2009).
    [12]W.Ren,G.Muralidharan,D.F.Wilson,D.E.Holcomb,Baltimore,Maryland,USA,July 17-21Proceedings of ASME Pressure Vessels and Piping Conference2011,Proceedings of ASME Pressure Vessels and Piping Conference(2011).
    [13]H.E.McCoy,Oak Ridge Nat.Lab.Rev.3(1969)35-48.
    [14]M.Pakniat,F.M.Ghaini,M.J.Torkamany,Mater.Des.106(2016)177-183.
    [15]L.Aucott,D.Huang,H.B.Dong,S.W.Wen,J.A.Marsden,A.Rack,A.C.Cocks,Sci.Rep.7(2017)40255.
    [16]J.Liu,S.Kou,Acta Mater.100(2015)359-368.
    [17]J.Brooks,A.Thompson,Int.Mater.Rev.36(1991)16-44.
    [18]J.Yoo,B.Kim,Y.Park,C.Lee,J.Mater.Sci.50(2015)279-286.
    [19]J.N.DuPont,J.C.Lippold,S.D.Kiser,Welding Metallurgy and Weldability of Nickel-Base Alloys,John Wiley&Sons,Hoboken,New York,2009,pp.100-143.
    [20]C.S.Ernst,Weld.J.73(1994)80-89.
    [21]G.Wang,Y.Sun,X.Wang,J.Liu,J.Liu,J.Li,J.Yu,Y.Zhou,T.Jin,X.Sun,J.Mater.Sci.Technol.10(2017)1219-1226.
    [22]F.Meyer-Olbersleben,N.Kasik,B.Ilschner,F.Réza?-Aria,Metall.Mat.Trans.A30(1999)981-989.
    [23]Z.Jian,Scr.Mater.48(2003)677-681.
    [24]H.T.Kim,S.W.Nam,Scr.Mater.34(1996)1139-1145.
    [25]T.B?llinghaus,H.Herold,C.E.Cross,J.C.Lippold,Hot Cracking Phenomena in Welds II,Weld Solidification Cracking in Solid-Solution Strengthened Ni-Base Filler Metals,Springer,Berlin,Heidelberg,2008,pp.147-170.
    [26]H.B.Harlan,V.B.Gritzner,Y-1409,1962,pp.10-22.
    [27]H.McCoy,B.McNabb,Intergranular Cracking of INOR-8 in the MSRE,Oak Ridge National Laboratory,USA,1972,January.
    [28]S.Chen,X.X.Ye,K.Yu,C.Li,Z.Li,Z.Li,X.Zhou,Mater.Sci.Eng.A 682(2017)168-177.
    [29]L.Jiang,X.Ye,C.Cui,H.Huang,B.Leng,Z.Li,X.Zhou,Mater.Sci.Eng.A 668(2016)137-145.
    [30]J.C.Lippold,Welding Metallurgy and Weldability,John Wiley&Sons,Hoboken,New Jersey,2015,pp.30-34.
    [31]Lippold,Weld.J.73(1994)187-216.
    [32]Y.Mei,Y.Liu,C.Liu,C.Li,L.Yu,Q.Guo,H.Li,Mater.Des.89(2016)964-977.
    [33]J.N.Dupont,J.R.Michael,B.D.Newbury,Weld.J.12(1999)78-83.
    [34]J.N.Dupont,J.Mater.Sci.32(1997)4101-4107.
    [35]T.Zengwu,L.Jinshan,H.Rui,L.Yi,B.Guanghai,Rare Met.Mater.Eng.39(2010)1157-1161.
    [36]G.Bai,J.Li,R.Hu,T.Zhang,H.Kou,H.Fu,Mater.Sci.Eng.A 528(2011)2339-2344.
    [37]D.Li,F.Xu,G.Li,M.He,K.Sun,L.Zhang,J.Iron Steel Res.(2003)89-93.
    [38]G.Bai,J.Li,R.Hu,Z.Tang,X.Xue,H.Fu,Mater.Sci.Eng.A 528(2011)1974-1978.
    [39]R.Hu,G.Bai,J.Li,J.Zhang,T.Zhang,H.Fu,Mater.Sci.Eng.A 548(2012)83-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700