用户名: 密码: 验证码:
BCC_CSM1.1(m)模式对热带太平洋潜热通量的评估
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An Assessment of the Tropical Pacific Latent Heat Flux Simulated by BCC_CSM 1.1(m)
  • 作者:唐慧琴 ; 曾刚 ; 黄悦
  • 英文作者:Tang Huiqing;Zeng Gang;Huang Yue;Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,Nanjing University of Information Science & Technology/Key Laboratory of Meteorological Disaster,Ministry of Education;Plateau Atmosphere and Environment Key Laboratory of Sichuan Province;
  • 关键词:BCC_CSM1.1(m) ; 潜热通量 ; 热带太平洋
  • 英文关键词:BCC_CSM1.1(m);;latent heat flux;;tropical Pacific
  • 中文刊名:YYQX
  • 英文刊名:Journal of Applied Meteorological Science
  • 机构:南京信息工程大学气象灾害预报预警与评估协同创新中心/气象灾害教育部重点实验室;高原大气与环境四川省重点实验室;
  • 出版日期:2016-07-15
  • 出版单位:应用气象学报
  • 年:2016
  • 期:v.27
  • 基金:公益性行业(气象)科研专项(GYHY201306020);; 国家重点基础研究发展计划(2013CB430202);; 国家自然科学基金项目(41430528,41575085)
  • 语种:中文;
  • 页:YYQX201604009
  • 页数:10
  • CN:04
  • ISSN:11-2690/P
  • 分类号:81-90
摘要
利用1979—2005年OAFlux(Objectively Analyzed air-sea Fluxes)观测资料以及CMIP5的15个耦合模式的模拟结果,评估了BCC_CSM1.1(m)模式对热带太平洋年平均潜热通量气候态和变化趋势的模拟能力,并分析造成趋势偏差的可能原因。结果表明:BCC_CSM1.1(m)模式模拟热带太平洋年平均潜热通量气候态在各纬度上差异较大,其中在赤道的模拟能力较佳,而在10°N和8°S附近模拟偏差较大;BCC_CSM1.1(m)模式对热带太平洋年平均潜热通量趋势的模拟能力一般,造成趋势偏差的主要原因是该模式低估了风速对潜热通量的局地贡献以及它对风速的非局地贡献的模拟存在较大偏差。此外,该模式未能较好地模拟出风速对全球变暖响应。因此,BCC_CSM1.1(m)模式对热带太平洋年平均潜热通量趋势模拟的改进需加强其对风速模拟的改进。
        The simulated tropical Pacific annual mean latent heat flux by BCC_CSM1.Km) as well as 14 other CMIP5 models are analyzed and compared with observations from objectively analyzed air-sea fluxesCOAFlux).Some possible causes for annual latent heat flux trend biases in BCC_CSM1.Km) are investigated.Biases of annual average latent heat flux between observations and BCC_CSM1.Km) in the tropical ocean and west boundary current area is larger,while in mid-high latitudes is smaller.Annual average latent heat flux is larger than observations,and annual mean latent heat flux variance is smaller than observations.The tropical Pacific annual and zonal mean latent heat flux is quite different in different latitudes.Simulation results of BCC_CSM1.Km) near 10°N and 8°S have relatively large biases,while the biases are rather small in equator.So BCC_CSM1.Km) needs to focus on improving the simulation of Pacific latent heat flux near 10° in each hemisphere.Among 15 CMIP5 models,NorESMl_M gives the best simulation result,and the root mean square error is the smallest,while the root mean square error of GISS_E2_R result is the largest.The root mean square error of BCC_CSM1.Km) result is 22.9 W · m~(-2),ranking eighth among all models,which indicates a moderate simulating ability.The trend of the tropical Pacific annual mean latent heat flux in BCC_CSM1.Km) has biases comparing with the observation,and the cause can be concluded in 3 aspects.First,the local contribution horizontal wind speed to latent heat flux trend is underestimated in BCC_CSM1.Km).Second,there are large biases for simulated non-local contribution of horizontal wind speed in BCC_CSM1.Km).Finally,the response to the global warming of horizontal wind speed in BCC_CSM1.1(m) has large biases as well.Therefore,the main cause for trend biases of tropical Pacific annual mean latent heat flux is the large simulation deviation of horizontal wind speed in BCC_CSM1.Km),and therefore the model needs improving in horizontal wind speed simulation.
引文
[1]刘娜,王彰贵,凌铁军,等.热带太平洋潜热通量变化及其与我国夏季降水的关系.海洋预报,2012,29(6):50-57.
    [2]沈晗,李江南,温之平,等.热带西太平洋潜热通量异常影响华南6月降水的模拟研究.热带气象学报,2012,28(5):757-763.
    [3]闫俊岳,唐志毅,姚华栋,等.2002年南海季风爆发前后西沙海区海-气通量交换及其变化.地球物理学报,2000,48(5):1000-1010.
    [4]王宏娜,陈锦年,左涛.印度洋潜热通量对南海夏季风爆发的影响.热带气象学报,2014,30(1):189-193.
    [5]姚华栋,任雪娟,马开玉.1998年南海季风试验期问海-气通量的估算.应用气象学报,2003,14(1):87-92.
    [6]Cayan D R.Variability of latent and sensible heat fluxes estimated using bulk formulae.Atmos Ocean,1992,30:1-42.
    [7]Araligidad N M,Maloney E D.Wind-driven latent heatflux and the intraseasonaloscillation.Geophys Res Lett,2008,35,L04815,doi:1029/2007GL032746.
    [8]郑建秋,任保华,李根.北太平洋海气界面湍流热通量的年际变化.大气科学,2009,33(5):1111-1121.
    [9]Li G,Ren B,Yang C,et al.Revisiting the trend of the tropical and subtropical Pacific surface latent heat flux during 1977—2006.J Geophys Res,2011,116,D10115,doi:10.1029/2010JD015444.
    [10]Yu L,Weller R A.Objectively analyzed air-sea heat fluxes for the global ice-free oceans(1981—2005).Bull Amer Meteor Soc,2007,88:27-539.
    [11]Liu J,Curry J A.Variability of the tropical and subtropical 0-cean surface latent heat flux during 1989—2000.Geophys Res Lett,2006,33L05706,doi:10.1029/2005GL024809.
    [12]Tomita H.Kubota M.Increase in turbulent heat flux during the1990s over the Kuroshio/Oyashio extension region.Geophys Res Lett,2005,32,L09705,doi:10.1029/2004GL022075.
    [13]石彦军,任余龙,王式功,等.BCC_CSM气候模式对中国区域气候变化模拟能力的检验.高原气象,2012,31(5):1257-1267.
    [14]周鑫,李清泉,孙秀博,等.BCC_CSM1.1模式对我国气温的模拟和预估.应用气象学报,2014,25(1):95-106.
    [15]张莉,吴统文,辛晓歌,等.BCC_CSM模式对热带降水年循环模态的模拟.大气科学,2013,37(5):994-1012.
    [16]董敏,吴统文,王在志,等.BCC_CSM1.0模式对20世纪降水及其变率的模拟.应用气象学报,2013,24(1):1-11.
    [17]朱芳泽,王召民,刘成彦,等.BCC_CSM对全球海表温度和混合层深度的模拟评估.大气科学学报,2014,37(6):684-694.
    [18]高峰,辛晓歌,吴统文.BCC_CSM1.1对10年尺度全球及区域温度的预测研究.大气科学,2012,36(6):1165-1179.
    [19]Yu L,Jin Xiangze,Weller R A.Role of net surface heat flux in seasonal variations of sea surface temperature in the Tropical Atlantic Ocean.J Clim,2007,19:6153-6169.
    [20]Yu L.Weller R A,Sun B.Improving latent and sensible heat flux estimates for the Atlantic Ocean(1988—1999)by a synthesis approach.J Clim,2004,17:373-393.
    [21]Hansen J,Ruedy R,Sato M,et al.Global surface airtemperature in 1995:Return to pre-Pinatubo level.Geophys Res Lett,1996,23:1665-1668.
    [22]Hansen J.Nazarenko L.Ruedy R,et al.Earth's energy imbalance Confirmation andimplications.Science,2005,308:1431-1435.
    [23]Hannachi A.Pattern hunting in climate:A new method for findingtrends in gridded climate data.Int J Climatol,2007,27:1-15.
    [24]Barbosa S M,Andersen O B.Trend patterns in global sea surface temperature.J Clim,2009,29:2049-2055.
    [25]Losada I J.Reguero B G.Mendez F J,et al.Long-term changes in sea-level components in Latin America and the Caribbean.Global and Planetray Change,2013,104:34-50.
    [26]Liu W T.Katsaros K B,Businger J A.Bulk parameterization of air-sea exchanges of heat and water vapor includring the molecular constraints at the interface.J Atmos Sci,1979,36:1722-1735.
    [27]Alexander M A,Scott J D.Surface flux variability over the North Pacific and North Atlantic Oceans.J Clim,1997,10:2963-2978.
    [28]吴统文,宋连春,李伟平,等.北京气候中心气候系统模式研发进展——在气候变化研究中的应用.气象学报,2014,72(1):12-29.
    [29]吴统文,宋连春,刘向文,等.国家气候中心短期气候预测模式系统业务化进展.应用气象学报,2013,24(5):533-543.
    [30]Santer B D,Wigley T M L,Boyle J S,et al.Statistical significance of trends and trend differences in layer-average atmospheric temperature timeseries.J Geophys Res,2000,105:7337-7356.
    [31]Tanimoto Y,Nakamura H.Kagimoto T,et al.An active role of extratropical sea surface temperature anomalies in determining anomalous turbulent heat flux.J Geophys Res,2003,108(C10):3304.
    [32]Yu L.Global variations in oceanic evaporation(1958—2005):The role of the changing wind speed.J Clim,2007,20:5376-5390.
    [33]Fang C F,Wu L X.The role of ocean dynamics in tropical Pacific SST response to warm climate in a fully coupled GCM.Geophys Res Lett,2008,5,L08703,doi:10.1029/2007GL-033097.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700