用户名: 密码: 验证码:
Structural variation during dog domestication: insights from gray wolf and dhole genomes
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Structural variation during dog domestication: insights from gray wolf and dhole genomes
  • 作者:Guo-Dong ; Wang ; Xiu-Juan ; Shao ; Bing ; Bai ; Junlong ; Wang ; Xiaobo ; Wang ; Xue ; Cao ; Yan-Hu ; Liu ; Xuan ; Wang ; Ting-Ting ; Yin ; Shao-Jie ; Zhang ; Yan ; Lu ; Zechong ; Wang ; Lu ; Wang ; Wenming ; Zhao ; Bing ; Zhang ; Jue ; Ruan ; Ya-Ping ; Zhang
  • 英文作者:Guo-Dong Wang;Xiu-Juan Shao;Bing Bai;Junlong Wang;Xiaobo Wang;Xue Cao;Yan-Hu Liu;Xuan Wang;Ting-Ting Yin;Shao-Jie Zhang;Yan Lu;Zechong Wang;Lu Wang;Wenming Zhao;Bing Zhang;Jue Ruan;Ya-Ping Zhang;State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology,Chinese Academy of Sciences;Center for Excellence in Animal Evolution and Genetics,Chinese Academy of Sciences;Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences;Medical Faculty, Kunming University of Science and Technology;Department of Pediatrics,the First People's Hospital of Yunnan Province;College of Pharmacology,Soochow University;Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology,Chinese Academy of Sciences;Department of Laboratory Animal Science, Kunming Medical University;Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University;Kunming College of Life Science,University of Chinese Academy of Sciences;Beijing Zoo;Core Genomic Facility, Beijing Institute of Genomics,Chinese Academy of Sciences;
  • 英文关键词:dog domestication;;genome assembly;;structural variation;;gray wolf;;dhole
  • 中文刊名:NASR
  • 英文刊名:国家科学评论(英文版)
  • 机构:State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology,Chinese Academy of Sciences;Center for Excellence in Animal Evolution and Genetics,Chinese Academy of Sciences;Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences;Medical Faculty, Kunming University of Science and Technology;Department of Pediatrics,the First People's Hospital of Yunnan Province;College of Pharmacology,Soochow University;Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology,Chinese Academy of Sciences;Department of Laboratory Animal Science, Kunming Medical University;Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University;Kunming College of Life Science,University of Chinese Academy of Sciences;Beijing Zoo;Core Genomic Facility, Beijing Institute of Genomics,Chinese Academy of Sciences;
  • 出版日期:2019-01-15
  • 出版单位:National Science Review
  • 年:2019
  • 期:v.6
  • 基金:supported by grants from the National Natural Science Foundation of China(91531303);; the Breakthrough Project of Strategic Priority Program of the Chinese Academy of Sciences(CAS)(XDB13000000).G.-D.W.;; supported by the Youth Innovation Promotion Association,CAS;; the 13th five-year informatization plan of the CAS(XXH13503-05);; supported by funds of the Key Laboratory of Shenzhen(ZDSYS20141118170111640)
  • 语种:英文;
  • 页:NASR201901023
  • 页数:13
  • CN:01
  • ISSN:10-1088/N
  • 分类号:116-128
摘要
Several processes like phenotypic evolution, disease susceptibility and environmental adaptations, which fashion the domestication of animals, are largely attributable to structural variations(SVs) in the genome.Here, we present high-quality draft genomes of the gray wolf(Canis lupus) and dhole(Cuon alpinus) with scaffold N50 of 6.04 Mb and 3.96 Mb, respectively. Sequence alignment comprising genomes of three canid species reveals SVs specific to the dog, particularly 16 315 insertions, 2565 deletions, 443 repeats, 16 inversions and 15 translocations. Functional annotation of the dog SVs associated with genes indicates their enrichments in energy metabolisms, neurological processes and immune systems. Interestingly, we identify and verify at population level an insertion fully covering a copy of the AKR1 B1(Aldo-Keto Reductase Family 1 Member B) transcript. Transcriptome analysis reveals a high level of expression of the new AKR1 B1 copy in the small intestine and liver, implying an increase in de novo fatty acid synthesis and antioxidant ability in dog compared to gray wolf, likely in response to dietary shifts during the agricultural revolution. For the first time, we report a comprehensive analysis of the evolutionary dynamics of SVs during the domestication step of dogs. Our findings demonstrate that retroposition can birth new genes to facilitate domestication, and affirm the importance of large-scale genomic variants in domestication studies.
        Several processes like phenotypic evolution, disease susceptibility and environmental adaptations, which fashion the domestication of animals, are largely attributable to structural variations(SVs) in the genome.Here, we present high-quality draft genomes of the gray wolf(Canis lupus) and dhole(Cuon alpinus) with scaffold N50 of 6.04 Mb and 3.96 Mb, respectively. Sequence alignment comprising genomes of three canid species reveals SVs specific to the dog, particularly 16 315 insertions, 2565 deletions, 443 repeats, 16 inversions and 15 translocations. Functional annotation of the dog SVs associated with genes indicates their enrichments in energy metabolisms, neurological processes and immune systems. Interestingly, we identify and verify at population level an insertion fully covering a copy of the AKR1 B1(Aldo-Keto Reductase Family 1 Member B) transcript. Transcriptome analysis reveals a high level of expression of the new AKR1 B1 copy in the small intestine and liver, implying an increase in de novo fatty acid synthesis and antioxidant ability in dog compared to gray wolf, likely in response to dietary shifts during the agricultural revolution. For the first time, we report a comprehensive analysis of the evolutionary dynamics of SVs during the domestication step of dogs. Our findings demonstrate that retroposition can birth new genes to facilitate domestication, and affirm the importance of large-scale genomic variants in domestication studies.
引文
1.Baker M.Structural variation:the genome’s hidden architecture.Nat Methods 2012;9:133-7.
    2.Alkan C,Coe BP and Eichler EE.Genome structural variation discovery and genotyping.Nat Rev Genet 2011;12:363-76.
    3.Marquesbonet T,Girirajan S and Eichler EE.The origins and impact of primate segmental duplications.Trends Genet 2009;25:443-54.
    4.Kidd JM,Cooper GM and Donahue WF et al.Mapping and sequencing of structural variation from eight human genomes.Nature 2008;453:56-64.
    5.Lin T,Xu X and Ruan J et al.Genome analysis of Taraxacum kok-saghyz Rodin provides new insights into rubber biosynthesis.Natl Sci Rev 2018;5:78-87.
    6.Xu SH,He ZW and Zhang Z et al.The origin,diversification and adaptation of a major mangrove clade(Rhizophoreae)revealed by whole-genome sequencing.Natl Sci Rev 2017;4:721-34.
    7.Zhang X,Wang K and Wang L et al.Genome-wide patterns of copy number variation in the Chinese yak genome.BMC Genomics 2016;17:379.
    8.Paudel Y,Madsen O and Megens H et al.Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication.BMC Genomics 2013;14:449.
    9.Axelsson E,Ratnakumar A and Arendt M et al.The genomic signature of dog domestication reveals adaptation to a starchrich diet.Nature 2013;495:360-4.
    10.Norris BJ and Whan V.A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep.Genome Res 2008;18:1282-93.
    11.Pielberg G,Olsson C and Syvanen A et al.Unexpectedly high allelic diversity at the KIT locus causing dominant white color in the domestic pig.Genetics 2002;160:305-11.
    12.Pielberg G,Day A and Plastow G et al.A sensitive method for detecting variation in copy numbers of duplicated genes.Genome Res 2003;13:2171-7.
    13.Larson G,Karlsson EK and Perri AR et al.Rethinking dog domestication by integrating genetics,archeology,and biogeography.Proc Natl Acad Sci USA 2012;109:8878-83.
    14.Vonholdt BM,Pollinger JP and Lohmueller KE et al.Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication.Nature 2010;464:898-902.
    15.Wang L,Ma YP and Zhou QJ et al.The geographical distribution of grey wolves(Canis lupus)in China:a systematic review.Zool Res 2016;37:315-26.
    16.Lindblad-Toh K,Wade CM and Mikkelsen TS et al.Genome sequence,comparative analysis and haplotype structure of the domestic dog.Nature 2005;438:803-19.
    17.Nicholas TJ,Baker C and Eichler EE et al.A high-resolution integrated map of copy number polymorphisms within and between breeds of the modern domesticated dog.BMC Genomics 2011;12:414.
    18.Akey JM,Ruhe AL and Akey DT et al.Tracking footprints of artificial selection in the dog genome.Proc Natl Acad Sci USA2010;107:1160-5.
    19.Ostrander EA,Wayne RK and Freedman AH et al.Demographic history,selection and functional diversity of the canine genome.Nat Rev Genet 2017;18:705-20.
    20.Fan Z,Silva P and Gronau I et al.Worldwide patterns of genomic variation and admixture in gray wolves.Genome Res.2016;26:163-73.
    21.Zhang W,Fan Z and Han E et al.Hypoxia adaptations in the Grey Wolf(Canis lupus chanco)from Qinghai-Tibet Plateau.PLo S Genet 2014;10:e1004466.
    22.Liu YH,Wang L and Xu T et al.Whole-genome sequencing of African dogs provides insights into adaptations against tropical parasites.Mole Biol Evol 2018;35:287-98.
    23.Wang GD,Fan RX and Zhai W et al.Genetic convergence in the adaptation of dogs and humans to the high-altitude environment of the Tibetan plateau.Genome Biol Evol 2014;6:2122-8.
    24.Alvarez CE and Akey JM.Copy number variation in the domestic dog.Mamm Genome 2012;23:144-63.
    25.Serres-Armero A,Povolotskaya IS and Quilez J et al.Similar genomic proportions of copy number variation within gray wolves and modern dog breeds inferred from whole genome sequencing.BMC Genomics 2017;18:977.
    26.Newman TL,Tuzun E and Morrison VA et al.A genome-wide survey of structural variation between human and chimpanzee.Genome Res 2005;15:1344-56.
    27.Yalcin B,Wong K and Agam A et al.Sequence-based characterization of structural variation in the mouse genome.Nature 2011;477:326-9.
    28.Zhang H and Chen L.The complete mitochondrial genome of dhole Cuon alpinus:phylogenetic analysis and dating evolutionary divergence within canidae.Mol Biol Rep 2011;38:1651-60.
    29.Wayne RK and Ostrander EA.Lessons learned from the dog genome.Trends Genet 2007;23:557-67.
    30.Wang W and Kirkness EF.Short interspersed elements(SINEs)are a major source of canine genomic diversity.Genome Res 2005;15:1798-808.
    31.Simao FA,Waterhouse RM and Ioannidis P et al.BUSCO:assessing genome assembly and annotation completeness with single-copy orthologs.Bioinformatics 2015;31:3210-2.
    32.Larkin J,Johnson HM and Subramaniam PS.Differential nuclear localization of the IFNGR-1 and IFNGR-2 subunits of the IFN-γreceptor complex following activation by IFN-γ.J Interferon Cytokine Res 2000;20:565-76.
    33.Lanier LL and Bakker ABH.The ITAM-bearing transmembrane adaptor DAP12in lymphoid and myeloid cell function.Immunol Today 2000;21:611-4.
    34.Laplana M,Royo JL and Garcia LF et al.SIRPB1 copy-number polymorphism as candidate quantitative trait locus for impulsive-disinhibited personality.Genes Brain Behav 2014;13:653-62.
    35.Weydt P,Pineda VV and Torrence AE et al.Thermoregulatory and metabolic defects in Huntington’s disease transgenic mice implicate PGC-1αin Huntington’s disease neurodegeneration.Cell Metab 2006;4:349-62.
    36.Ahir VB,Panchal MT and Tripathi AK et al.Genetic polymorphism in the aldoketo reductase family 1 member b1(AKR1B1)gene of murrah buffalo bulls(Bubalus bubalis).Buffalo Bull 2010;29:274-8.
    37.Xing J,Zhang Y and Han K et al.Mobile elements create structural variation:analysis of a complete human genome.Genome Res 2009;19:1516-26.
    38.Pang AWC,Macdonald JR and Pinto D et al.Towards a comprehensive structural variation map of an individual human genome.Genome Biol 2010;11:1-14.
    39.Furano AV.The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons.Prog Nucleic Acid Res Mol Biol 2000;64:255-94.
    40.Credille KM,Minor JS and Barnhart KF et al.Transglutaminase 1-deficient recessive lamellar ichthyosis associated with a LINE-1 insertion in Jack Russell terrier dogs.Br J Dermatol 2009;161:265-72.
    41.Smith BF,Yue Y and Woods PR et al.An intronic LINE-1 element insertion in the dystrophin gene aborts dystrophin expression and results in Duchennelike muscular dystrophy in the corgi breed.Lab Invest 2011;91:216-31.
    42.Kirkness EF,Bafna V and Halpern AL et al.The dog genome:survey sequencing and comparative analysis.Science 2003;301:1898-903.
    43.Clark LA,Wahl JM and Rees CA et al.Canine SINEs and their effects on phenotypes of the domestic dog.In:Gustafson J,Taylor J and Stacey G(eds).Genomics of Disease.New York:Springer,2008,79-88.
    44.Sutter NB,Bustamante CD and Chase K et al.A single IGF1 allele is a major determinant of small size in dogs.Science 2007;316:112-5.
    45.Clark LA,Wahl JM and Rees CA et al.From the cover:retrotransposon insertion in SILV is responsible for merle patterning of the domestic dog.Proc Natl Acad Sci USA 2006;103:1376-81.
    46.Arendt M,Cairns KM and Ballard JW et al.Diet adaptation in dog reflects spread of prehistoric agriculture.Heredity 2016;117:301-6.
    47.Ollivier M,Tresset A and Bastian F et al.Amy2B copy number variation reveals starch diet adaptations in ancient European dogs.R Soc Open Sci 2016;3:160449.
    48.Quignon P,Rimbault M and Robin S et al.Genetics of canine olfaction and receptor diversity.Mamm Genome 2012;23:132-43.
    49.Chen R,Irwin DM and Zhang YP.Differences in selection drive olfactory receptor genes in different directions in dogs and wolf.Mol Biol Evol 2012;29:3475-84.
    50.Tacher S,Quignon P and Rimbault M et al.Olfactory receptor sequence polymorphism within and between breeds of dogs.J Hered 2005;96:812-6.
    51.Wang M,Yang H and Otecko NO et al.Olfactory genes in Tibetan wild boar.Nat Genet 2016;48:972-3.
    52.Zichner T,Garfield DA and Rausch T et al.Impact of genomic structural variation in Drosophila melanogaster based on population-scale sequencing.Genome Res 2013;23:568-79.
    53.Sudmant PH,Rausch T and Gardner EJ et al.An integrated map of structural variation in 2,504 human genomes.Nature 2015;526:75-81.
    54.Larson G and Fuller DQ.The evolution of animal domestication.Annu Rev Ecol Evol Syst.2014;45:115-36.
    55.Ghosh S,Qu Z and Das PJ et al.Copy number variation in the horse genome.PLo S Genet 2014;10:e1004712.
    56.Zhang L,Jia S and Yang M et al.Detection of copy number variations and their effects in Chinese bulls.BMC Genomics 2014;15:480.
    57.Pastel E,Pointud J and Volat F et al.Aldo-keto reductases 1B in endocrinology and metabolism.Front Pharmacol 2012;3:148.
    58.Cao D,Fan ST and Chung SSM.Identification and characterization of a novel human aldose reductase-like gene.J Biol Chem 1998;273:11429-35.
    59.Wang C,Yan R and Luo D et al.Aldo-keto reductase family 1 member B10promotes cell survival by regulating lipid synthesis and eliminating carbonyls.J.Biol.Chem.2009;284:26742-8.
    60.Ma J,Yan R and Zu X et al.Aldo-keto reductase family 1 B10 affects fatty acid synthesis by regulating the stability of acetyl-Co A carboxylase-αin breast cancer cells.J Biol Chem 2008;283:3418-23.
    61.Wakil SJ.Fatty acid synthase,a proficient multifunctional enzyme.Biochemistry 1989;28:4523-30.
    62.Ollivier M,Tresset A and Bastian F et al.Amy2B copy number variation reveals starch diet adaptations in ancient European dogs.Royal Soc Open Sci 2016;3:160449.
    63.Shen Y,Zhong L and Johnson S et al.Human aldo-keto reductases 1B1 and1B10:a comparative study on their enzyme activity toward electrophilic carbonyl compounds.Chem Biol Interact 2011;191:192-8.
    64.Kaessmann H,Vinckenbosch N and Long M.RNA-based gene duplication:mechanistic and evolutionary insights.Nat Rev Genet 2009;10:19-31.
    65.Carneiro M,Rubin CJ and Palma FD et al.Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication.Science 2014;345:1074-9.
    66.Li Y,Vonholdt BM and Reynolds A et al.Artificial selection on brainexpressed genes during the domestication of dog.Mol Biol Evol 2013;30:1867-76.
    67.Irvin DK,Zurcher SD and Nguyen T et al.Expression patterns of Notch1,Notch2,and Notch3 suggest multiple functional roles for the Notch-DSL signaling system during brain development.J Comp Neurol 2001;436:167-81.
    68.Dias V,Junn E and Mouradian MM.The role of oxidative stress in Parkinson’s disease.J Parkinsons Dis 2013;3:461.
    69.Beaulieu J.A role for Akt and glycogen synthase kinase-3 as integrators of dopamine and serotonin neurotransmission in mental health.J Psychiatry Neurosci 2012;37:7-16.
    70.Mast N,White MA and Bjorkhem I et al.Crystal structures of substrate-bound and substrate-free cytochrome P450 46A1,the principal cholesterol hydroxylase in the brain.Proc Natl Acad Sci USA 2008;105:9546-51.
    71.Tang XX,Pleasure DE and Ikegaki N.c DNA cloning,chromosomal localization,and expression pattern of EPLG8,a new member of the EPLG gene family encoding ligands of EPH-related protein-tyrosine kinase receptors.Genomics1997;41:17-24.
    72.Yaworsky PJ and Kappen C.Heterogeneity of neural progenitor cells revealed by enhancers in the nestin gene.Dev Biol 1999;205:309-21.
    73.Burgess DL,Gefrides LA and Foreman PJ et al.A cluster of three novel Ca 2+Channelγsubunit genes on chromosome 19q13.4:evolution and expression profile of theγsubunit gene family.Genomics 2001;71:339-50.
    74.Reppert SM,Godson C and Mahle CD et al.Molecular characterization of a second melatonin receptor expressed in human retina and brain:the Mel1b melatonin receptor.Proc Natl Acad Sci USA 1995;92:8734-8.
    75.Yazdani U and Terman JR.The semaphorins.Genome Biol 2006;7:1-14.
    76.Karp G.Molekulare Zellbiologie.Berlin:Springer,2005.
    77.Popp S,Andersen JS and Maurel P et al.Localization of aggrecan and versican in the developing rat central nervous system.Dev Dyn 2003;227:143-9.
    78.Sorensen JB,Nagy G and Varoqueaux F et al.Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23.Cell 2003;114:75-86.
    79.Hoeppner MP,Lundquist A and Pirun M et al.An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts.Plos One 2014;9:e91172.
    80.Wucher V,Legeai F and Hedan B et al.FEELnc:a tool for long non-coding RNA annotation and its application to the dog transcriptome.Nucleic Acids Res 2017;45:e57.
    81.Plassais J,Lagoutte L and Correard S et al.A point mutation in a lincRNA upstream of GDNF is associated to a canine insensitivity to pain:a spontaneous model for human sensory neuropathies.PLo S Genet 2016;12:e1006482.
    82.Johnson R and Guigo R.The RIDL hypothesis:transposable elements as functional domains of long noncoding RNAs.RNA 2014;20:959-76.
    83.Ruan J,Jiang L and Chong Z et al.Pseudo-Sanger sequencing:massively parallel production of long and near error-free reads using NGS technology.BMCGenomics 2013;14:711.
    84.Margulies M,Egholm M and Altman WE et al.Genome sequencing in microfabricated high-density picolitre reactors.Nature 2005;437:376-80.
    85.Boetzer M,Henkel CV and Jansen HJ et al.Scaffolding pre-assembled contigs using SSPACE.Bioinformatics 2011;27:578-9.
    86.Luo R,Liu B and Xie Y et al.SOAPdenovo2:an empirically improved memoryefficient short-read de novo assembler.Giga Sci 2012;1:18.
    87.Li H and Durbin R.Fast and accurate short read alignment with BurrowsWheeler transform.Bioinformatics 2009;25:1754-60.
    88.Li H and Durbin R.Fast and accurate long-read alignment with BurrowsWheeler transform.Bioinformatics 2010;26:589-95.
    89.Li H,Handsaker B and Wysoker A et al.The sequence alignment/map format and SAMtools.Bioinformatics 2009;25:2078-9.
    90.Jurka J,Kapitonov VV and Pavlicek A et al.Repbase Update,a database of eukaryotic repetitive elements.Cytogenet Genome Res 2005;110:462-7.
    91.Benson G.Tandem repeats finder:a program to analyze DNA sequences.Nucleic Acids Res 1999;27:573-80.
    92.Kim D,Pertea G and Trapnell C et al.Top Hat2:Accurate alignment of transcriptomes in the presence of insertions,deletions and gene fusions.Genome Biol2013;14:1-13.
    93.Trapnell C,Williams BA and Pertea G et al.Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation.Nat Biotechnol 2010;28:511-5.
    94.Stanke M,Steinkamp R and Waack S et al.AUGUSTUS:a web server for gene finding in eukaryotes.Nucleic Acids Res 2004;32:W309-12.
    95.Burge CB and Karlin S.Prediction of complete gene structures in human genomic DNA.J Mol Biol 1997;268:78-94.
    96.Majoros WH,Pertea M and Salzberg SL.Tigr Scan and Glimmer HMM:two open source ab initio eukaryotic gene-finders.Bioinformatics 2004;20:2878-9.
    97.Lukashin AV and Borodovsky M.Gene Mark.hmm:new solutions for gene finding.Nucleic Acids Res 1998;26:1107-15.
    98.Altschul SF,Madden TL and Schaffer AA et al.Gapped BLAST and PSI-BLAST:a new generation of protein database search programs.Nucleic Acids Res1997;25:3389-402.
    99.Birney E and Durbin R.Dynamite:a flexible code generating language for dynamic programming methods used in sequence comparison.Proc Int Conf Intell Syst Mol Biology 1997;56-64.
    100.Haas BJ,Delcher AL and Mount MSMS et al.Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies.Nucleic Acids Res 2003;31:5654-66.
    101.Haas BJ,Salzberg SL and Zhu W et al.Automated eukaryotic gene structure annotation using EVidence Modeler and the Program to Assemble Spliced Alignments.Genome Biol 2008;9:1-22.
    102.Zdobnov EM and Apweiler R.InterProScan-an integration platform for the signature-recognition methods in Inter Pro.Bioinformatics 2001;17:847-8.
    103.Li H,Coghlan A and Ruan J et al.Tree Fam:a curated database of phylogenetic trees of animal gene families.Nucleic Acids Res 2006;34:D572-80.
    104.De Bie T,Cristianini N and Demuth JP et al.CAFE:a computational tool for the study of gene family evolution.Bioinformatics 2006;22:1269-71.
    105.Harris RS.Improved pairwise alignment of genomic DNA.Ph.D.Thesis.Pennsylvania State University 2007.
    106.Blanchette M,Kent WJ and Riemer C et al.Aligning multiple genomic sequences with the threaded blockset aligner.Genome Res 2004;14:708-15.
    107.Kent WJ,Baertsch R and Hinrichs A et al.Evolution’s cauldron:duplication,deletion,and rearrangement in the mouse and human genomes.Proc Natl Acad Sci USA 2003;100:11484-9.
    108.Huang DW,Sherman BT and Lempicki RA.Bioinformatics enrichment tools:paths toward the comprehensive functional analysis of large gene lists.Nucleic Acids Res 2009;37:1-13.
    109.Wang G,Zhai W and Yang H et al.Out of southern East Asia:the natural history of domestic dogs across the world.Cell Res 2016;26:21-33.
    110.De Pristo MA,Banks E and Poplin R et al.A framework for variation discovery and genotyping using next-generation DNA sequencing data.Nat Genet 2011;43:491-8.
    111.Chen K,Wallis JW and McLellan MD et al.Break Dancer:an algorithm for high-resolution mapping of genomic structural variation.Nat Methods 2009;6:677-81.
    112.Abyzov A,Urban AE and Snyder M et al.CNVnator:an approach to discover,genotype,and characterize typical and atypical CNVs from family and population genome sequencing.Genome Res 2011;21:974-84.
    113.Lam HYK,Pan CP and Clark MJ et al.Detecting and annotating genetic variations using the Huge Seq pipeline.Nat Biotechnol 2012;30:226-9.
    114.Martin M.Cutadapt removes adapter sequences from high-throughput sequencing reads.EMBnet.journal 2011;17:10-2.
    115.Lohse M,Bolger AM and Nagel A et al.Robi NA:a user-friendly,integrated software solution for RNA-Seq-based transcriptomics.Nucleic Acids Res2012;40:W622-7.
    116.Trapnell C,Pachter L and Salzberg SL.Top Hat:discovering splice junctions with RNA-Seq.Bioinformatics 2009;25:1105-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700