用户名: 密码: 验证码:
超声活化过硫酸盐降解水中典型嗅味
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ultrasonically Activated Persulfate Degrades Typical Odors in Water
  • 作者:孙昕 ; 孙杰 ; 李鹏飞 ; 汤加刚 ; 杨晴 ; 唐晓
  • 英文作者:SUN Xin;SUN Jie;LI Peng-fei;TANG Jia-gang;YANG Qing;TANG Xiao;Key Laboratory of Northwest Water Resource,Environment and Ecology of Ministry of Education,School of Environmental and Municipal Engineering,Xi'an University of Architecture and Technology;Xi'an Jumping Water Environment Technology Co.,Ltd.;
  • 关键词:二甲基异莰醇(2-MIB) ; 土臭素(GSM) ; 超声 ; 硫酸根自由基 ; 氢氧根自由基
  • 英文关键词:2-methylisoborneol(2-MIB);;geosmin(GSM);;ultrasound;;sulfate radicals;;hydroxyl radicals
  • 中文刊名:HJKZ
  • 英文刊名:Environmental Science
  • 机构:西安建筑科技大学环境与市政工程学院西北水资源与环境生态教育部重点实验室;西安扬水源环境科技有限公司;
  • 出版日期:2018-11-15 17:58
  • 出版单位:环境科学
  • 年:2019
  • 期:v.40
  • 基金:国家自然科学基金项目(51178379);; 陕西省科技统筹创新工程计划项目(2015KTCL-03-15)
  • 语种:中文;
  • 页:HJKZ201904033
  • 页数:8
  • CN:04
  • ISSN:11-1895/X
  • 分类号:293-300
摘要
为有效解决饮用水嗅味污染问题,选取水中典型致嗅物质二甲基异莰醇(2-MIB)和土臭素(GSM)作为目标污染物,系统研究了超声(US)活化过硫酸盐(PS)高级氧化技术对两种致嗅物质的降解规律及其影响因素.结果表明,在15 min内超声/过硫酸盐联用工艺能有效去除水中典型嗅味,与单独超声处理相比,2-MIB和GSM的去除率分别可提高57. 0%和63. 6%; 2-MIB与GSM浓度在100~800 ng·L~(-1)范围内US/PS联用工艺均有较高的去除率,且在100 ng·L~(-1)时降解效果最佳,去除率分别可达88. 7%和93. 3%;典型致嗅物质的降解速率随PS浓度(0. 25~2 mmol·L~(-1))和US声强(0. 33~0. 53W·cm~(-2))的增加而加快;水体中腐殖酸存在会竞争消耗自由基使嗅味降解受到抑制但影响效果不显著;在反应体系中分别加入甲醇与叔丁醇(自由基清除剂)后,2-MIB与GSM去除率明显下降,且甲醇对嗅味降解抑制程度强于叔丁醇,表明US/PS高级氧化技术对嗅味快速的降解主要是硫酸根自由基与羟基自由基共同作用的结果.
        In order to solve the problem of odor pollution in drinking water effectively,the typical odorants 2-methylisoborneol( 2-MIB) and Geosmin( GSM) were selected as target pollutants. The degradation effect and factors influencing these two typical odors by ultrasonically( US) activated persulfate( PS) advanced oxidation technology were systematically investigated in this work. When the sample was treated for 15 min,the application of US/PS combination technology increased the removal rates of 2-MIB and GSM by57. 0% and 63. 6%,respectively,compared with sonication alone. Furthermore,the optimum removal rates of 2-MIB and GSM were88. 7% and 93. 3% when the 2-MIB and GSM concentrations were 100 ng·L~(-1). Moreover,the degradation rates of 2-MIB and GSM increased with increasing PS concentration( from 0. 25 mmol·L~(-1) to 2 mmol·L~(-1)) and US intensity( from 0. 33 W·cm~(-2) to 0. 53 W·cm~(-2)). The presence of humic acid competes to consume free radicals to inhibit the degradation of odor. The addition of the radical scavengers methanol and tert-butanol can reduce the removal rates of 2-MIB and GSM. The presence of methanol had a stronger inhibition effect on odor degradation than tert-butanol,indicating that the odor removal was mainly caused by sulfate radicals and hydroxyl radicals in the combination US/PS technology.
引文
[1] Su M,Yu J W,Zhang J Z,et al. MIB-producing cyanobacteria(Planktothrix sp.)in a drinking water reservoir:distribution and odor producing potential[J]. Water Research,2015,68:444-453.
    [2]张旭东,张学博,刘畅,等.天津滨海新区自来水嗅味事件成因分析及应急处理[J].中国给水排水,2017,33(13):46-49.Zhang X D,Zhang X B,Liu C,et al. Cause for odor problem and its emergent treatment in Tianjin Binhai New Area[J].China Water&Wastewater,2017,33(13):46-49.
    [3] Dietrich A M,Phetxumphou K,Gallagher D L. Systematic tracking,visualizing,and interpreting of consumer feedback for drinking water quality[J]. Water Research,2014,66:63-74.
    [4] Nam-Koong H,Schroeder J P,Petrick G,et al. Removal of the off-flavor compounds geosmin and 2-methylisoborneol from recirculating aquaculture system water by ultrasonically induced cavitation[J]. Aquacultural Engineering,2016,70:73-80.
    [5] Lee J,Rai P K,Jeon Y J,et al. The role of algae and cyanobacteria in the production and release of odorants in water[J]. Environmental Pollution,2017,227:252-262.
    [6] Qi M,Chen J,Sun X X,et al. Development of models for predicting the predominant taste and odor compounds in Taihu Lake,China[J]. PLo S One,2012,7(12):e51976.
    [7]焦洁,陆纳新,王海湧,等.太湖原水藻类代谢产物中嗅味物质的去除技术研究[J].中国给水排水,2016,32(11):64-67.Jiao J, Lu N X, Wang H Y, et al. Removal of odorous substances from algae metabolites in raw water of Taihu Lake[J].China Water&Wastewater,2016,32(11):64-67.
    [8] Yu J W,Yang F C,Hung W N,et al. Prediction of powdered activated carbon doses for 2-MIB removal in drinking water treatment using a simplified HSDM approach[J]. Chemosphere,2016,156:374-382.
    [9]翁皓琳,肖冠芳,葛孝新,等.高密孚日水厂化学预氧化法去除嗅味物质研究[J].环境科学与技术,2016,39(S1):247-250,289.Weng H L,Xiao G F,Ge X X,et al. Removal effect of taste and odor for chemical preoxidation of sunvim water plant in Gaomi[J]. Environmental Science&Technology,2016,39(S1):247-250,289.
    [10] Azaria S, Nir S, Van Rijn J. Combined adsorption and degradation of the off-flavor compound 2-methylisoborneol in sludge derived from a recirculating aquaculture system[J].Chemosphere,2017,169:69-77.
    [11] Kim C,Lee SⅡ,Hwang S,et al. Removal of geosmin and 2-methylisoboneol(2-MIB)by membrane system combined with powdered activated carbon(PAC)for drinking water treatment[J]. Journal of Water Process Engineering,2014,4:91-98.
    [12] Antonopoulou M,Evgenidou E,Lambropoulou D,et al. A review on advanced oxidation processes for the removal of taste and odor compounds from aqueous media[J]. Water Research,2014,53:215-234.
    [13] Xie P C,Ma J,Liu W,et al. Removal of 2-MIB and geosmin using UV/persulfate:contributions of hydroxyl and sulfate radicals[J]. Water Research,2015,69:223-233.
    [14] Yaparatne S,Tripp C P,Amirbahman A. Photodegradation of taste and odor compounds in water in the presence of immobilized Ti O2-SiO2photocatalysts[J]. Journal of Hazardous Materials,2018,346:208-217.
    [15] Bu L J,Zhou S Q,Shi Z,et al. Removal of 2-MIB and geosmin by electrogenerated persulfate:performance, mechanism and pathways[J]. Chemosphere,2017,168:1309-1316.
    [16] Park J A,Nam H L,Choi J W,et al. Oxidation of geosmin and2-methylisoborneol by the photo-Fenton process:kinetics,degradation intermediates,and the removal of microcystin-LR and trihalomethane from Nak-Dong River water,South Korea[J].Chemical Engineering Journal,2017,313:345-354.
    [17] Waclawek S, Lutze H V, Grübel K, et al. Chemistry of persulfates in water and wastewater treatment:a review[J].Chemical Engineering Journal,2017,330:44-62.
    [18] Matzek L W, Carter K E. Activated persulfate for organic chemical degradation:a review[J]. Chemosphere,2016,151:178-188.
    [19] Ghanbari F,Moradi M,Gohari F. Degradation of 2,4,6-trichlorophenol in aqueous solutions using peroxymonosulfate/activated carbon/UV process via sulfate and hydroxyl radicals[J]. Journal of Water Process Engineering,2016,9:22-28.
    [20]蒋昊琳,刘立新,杨明全,等.超声波在水处理中的应用与研究现状[J].化工进展,2017,36(S1):464-468.Jiang H L,Liu L X,Yang M Q,et al. Application and research status of ultrasound in water treatment[J]. Chemical Industry and Engineering Progress,2017,36(S1):464-468.
    [21]魏红,史京转,李佳霖,等.超声、过硫酸钾协同去除水中诺氟沙星的效果[J].环境科学,2015,36(11):4121-4126.Wei H,Shi J Z,Li J L,et al. Norfloxacin solution degradation under ultrasound,potassium persulfate collaborative system[J].Environmental Science,2015,36(11):4121-4126.
    [22] Wang S L,Zhou N. Removal of carbamazepine from aqueous solution using sono-activated persulfate process[J]. Ultrasonics Sonochemistry,2016,29:156-162.
    [23] Liang C J, Huang C F, Mohanty N, et al. A rapid spectrophotometric determination of persulfate anion in ISCO[J].Chemosphere,2008,73(9):1540-1543.
    [24] Chakma S,Moholkar V S. Investigations in synergism of hybrid advanced oxidation processes with combinations of sonolysis+Fenton process+UV for degradation of bisphenol A[J].Industrial&Engineering Chemistry Research,2014,53(16):6855-6865.
    [25] Song W H,O'Shea K E. Ultrasonically induced degradation of 2-methylisoborneol and geosmin[J]. Water Research,2007,41(12):2672-2678.
    [26] Darsinou B,Frontistis Z,Antonopoulou M,et al. Sono-activated persulfate oxidation of bisphenol A:kinetics,pathways and the controversial role of temperature[J]. Chemical Engineering Journal,2015,280:623-633.
    [27] Ji Y F,Dong C X,Kong D Y,et al. Heat-activated persulfate oxidation of atrazine:Implications for remediation of groundwater contaminated by herbicides[J]. Chemical Engineering Journal,2015,263:45-54.
    [28]马京帅,吕文英,刘国光,等.热活化过硫酸盐降解水中的普萘洛尔[J].环境化学,2017,36(2):221-228.Ma J S,Lyu W Y,Liu G G,et al. Degradation of propranolol in aqueous solution by heat-activated persulfate[J]. Environmental Chemistry,2017,36(2):221-228.
    [29] Chen W S,Su Y C. Removal of dinitrotoluenes in wastewater by sono-activated persulfate[J]. Ultrasonics Sonochemistry,2012,19(4):921-927.
    [30] Monteagudo J M,El-Taliawy H,Durán A,et al. Sono-activated persulfate oxidation of diclofenac:degradation,kinetics,pathway and contribution of the different radicals involved[J]. Journal of Hazardous Materials,2018,357:457-465.
    [31] Peng L P,Wang L,Hu X T,et al. Ultrasound assisted,thermally activated persulfate oxidation of coal tar DNAPLs[J].Journal of Hazardous Materials,2016,318:497-506.
    [32] SillanpaaM,Ncibi M C,Matilainen A. Advanced oxidation processes for the removal of natural organic matter from drinking water sources:a comprehensive review[J]. Journal of Environmental Management,2018,208:56-76.
    [33]孙昕,史路肖,张燚,等.真空紫外/过二硫酸盐去除饮用水中嗅味物质[J].环境科学,2018,39(5):2195-2201.Sun X,Shi L X,Zhang Y,et al. Removal of odorants in drinking water using VUV/persulfate[J]. Environmental Science,2018,39(5):2195-2201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700