用户名: 密码: 验证码:
Spatiotemporal evolution of carbon sequestration of limestone weathering in China
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatiotemporal evolution of carbon sequestration of limestone weathering in China
  • 作者:Huiwen ; LI ; Shijie ; WANG ; Xiaoyong ; BAI ; Yue ; CAO ; Luhua ; WU
  • 英文作者:Huiwen LI;Shijie WANG;Xiaoyong BAI;Yue CAO;Luhua WU;State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences;Puding Comprehensive Karst Research and Experimental Station, Institute of Geochemistry, Chinese Academy of Sciences and Science and Technology Department of Guizhou Province;University of Chinese Academy of Sciences;
  • 英文关键词:Limestone;;Chemical weathering carbon sink;;Spatiotemporal evolution;;Dissolution;;Random forest
  • 中文刊名:JDXG
  • 英文刊名:中国科学:地球科学(英文版)
  • 机构:State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences;Puding Comprehensive Karst Research and Experimental Station, Institute of Geochemistry, Chinese Academy of Sciences and Science and Technology Department of Guizhou Province;University of Chinese Academy of Sciences;
  • 出版日期:2019-03-05 15:15
  • 出版单位:Science China(Earth Sciences)
  • 年:2019
  • 期:v.62
  • 基金:supported by the United Fund of Karst Science Research Center (Grant No. U1612441);; the National Key Research Program of China (Grant Nos. 2016YFC0502102 & 2016YFC0502300);; the “Western Light” Talent Training Plan of Chinese Academy of Sciences (Class A 2018);; the Chinese Academy of Sciences and Technology Services Network Program (Grant Nos. KFJ-STS-ZDTP-036);; the International Cooperation Agency International Partnership Program (Grant Nos. 132852KYSB20170029 & 2014-3);; the Guizhou High-Level Innovative Talent Training Program “Ten” Level Talents Program (Grant No. 2016-5648);; the National Natural Science Foundation of China (Grant Nos. 41571130074 & 41571130042);; the Science and Technology Plan of Guizhou Province of China (Grant No. 2017-2966)
  • 语种:英文;
  • 页:JDXG201906006
  • 页数:18
  • CN:06
  • ISSN:11-5843/P
  • 分类号:88-105
摘要
Carbonate carbon sequestration(CS) can aid in solving the problem of terrestrial residual carbon sinks and imbalances in the global carbon budget. Thus, complete understanding of the magnitude, spatiotemporal distribution, and evolution of this sequestration is highly desirable. On the basis of random forest regression and maximal potential dissolution model for carbonate, we estimated the CS of typical carbonate weathering in China from 2000 to 2014, that is, the sequestration of limestone weathering, using long-term ecologic, meteorological, hydrological raster data, and monitored data from 44 watersheds in China and surrounding regions. We extended our analyses by systematically exploring the spatiotemporal pattern and evolution trend of the flux and total sequestration. High levels of ionic activity coefficients of Ca~(2+) and HCO_3~- in limestone regions were observed to be mainly distributed in Northern and Northwestern China with a clear gradient from northwest to southeast. With a contrary spatial pattern, the annual average CS flux(CSF) of limestone weathering in China was estimated to be 4.28 t C km~(-2) yr~(-1), with high values mainly in the karst zones in Southeastern China. The mean CSF in different latitudes showed that Southern China(south of 28.14°N) was the region with the largest interannual fluctuation of flux and CSF increases as latitude decreases. The mean CSF in subtropical and tropical(TR) regions was the maximum of all major climate types, and for the frigid(F), mid-temperate(MTE), warm temperate(WTE), and temperate(TE) major climates; the CSF in the desert(D)subdivided climate was the minimum of these climates. By contrast, the values in grassland(G) and broad-leaved forest subdivided climate were the maximum. The pixel-based trend analysis indicated that the CSF of limestone weathering in China was slightly increasing in the period 2000–2014 with a rate of 0.036 t C km~(-2) yr~(-1). Furthermore, the annual total CS was estimated to be 7.07 Tg carbon per year(Tg C yr~(-1)) with high levels in 2002, 2008, and 2010, and the minimum appeared in 2011 with a slightly increasing trend of the total CS being observed with a rate of 0.06 Tg C yr~(-1). Tibet Autonomous Region was the administrative division with the largest total CS of limestone weathering(1.20 Tg C yr~(-1)) in China, and karst zones in Southeastern China had the largest total CS(4.95 Tg C yr~(-1)) which accounts for 70.01% of that in the three divided karst regions. On the basis of the diversity of rock chemical weathering carbon cycle mechanisms of different carbonate rock types, we estimated that the total CS of carbonate weathering in China may reach 11.37 Tg C yr~(-1)(the sink was approximately 5.02 t C km~(-2) yr~(-1)),which amounts to 16.20% of the total biomass CS in China, furthermore, the CSF of carbonate weathering in China can reach6.54 t C km~(-2) yr~(-1) if excluding the interference of the negative runoff. This finding indicates that CS of carbonate weathering is an indispensable part of China's terrestrial carbon sink system. The research pattern of this study was important for further improving the accuracy of the estimation for the global carbonate weathering carbon sink.
        Carbonate carbon sequestration(CS) can aid in solving the problem of terrestrial residual carbon sinks and imbalances in the global carbon budget. Thus, complete understanding of the magnitude, spatiotemporal distribution, and evolution of this sequestration is highly desirable. On the basis of random forest regression and maximal potential dissolution model for carbonate, we estimated the CS of typical carbonate weathering in China from 2000 to 2014, that is, the sequestration of limestone weathering, using long-term ecologic, meteorological, hydrological raster data, and monitored data from 44 watersheds in China and surrounding regions. We extended our analyses by systematically exploring the spatiotemporal pattern and evolution trend of the flux and total sequestration. High levels of ionic activity coefficients of Ca~(2+) and HCO_3~- in limestone regions were observed to be mainly distributed in Northern and Northwestern China with a clear gradient from northwest to southeast. With a contrary spatial pattern, the annual average CS flux(CSF) of limestone weathering in China was estimated to be 4.28 t C km~(-2) yr~(-1), with high values mainly in the karst zones in Southeastern China. The mean CSF in different latitudes showed that Southern China(south of 28.14°N) was the region with the largest interannual fluctuation of flux and CSF increases as latitude decreases. The mean CSF in subtropical and tropical(TR) regions was the maximum of all major climate types, and for the frigid(F), mid-temperate(MTE), warm temperate(WTE), and temperate(TE) major climates; the CSF in the desert(D)subdivided climate was the minimum of these climates. By contrast, the values in grassland(G) and broad-leaved forest subdivided climate were the maximum. The pixel-based trend analysis indicated that the CSF of limestone weathering in China was slightly increasing in the period 2000–2014 with a rate of 0.036 t C km~(-2) yr~(-1). Furthermore, the annual total CS was estimated to be 7.07 Tg carbon per year(Tg C yr~(-1)) with high levels in 2002, 2008, and 2010, and the minimum appeared in 2011 with a slightly increasing trend of the total CS being observed with a rate of 0.06 Tg C yr~(-1). Tibet Autonomous Region was the administrative division with the largest total CS of limestone weathering(1.20 Tg C yr~(-1)) in China, and karst zones in Southeastern China had the largest total CS(4.95 Tg C yr~(-1)) which accounts for 70.01% of that in the three divided karst regions. On the basis of the diversity of rock chemical weathering carbon cycle mechanisms of different carbonate rock types, we estimated that the total CS of carbonate weathering in China may reach 11.37 Tg C yr~(-1)(the sink was approximately 5.02 t C km~(-2) yr~(-1)),which amounts to 16.20% of the total biomass CS in China, furthermore, the CSF of carbonate weathering in China can reach6.54 t C km~(-2) yr~(-1) if excluding the interference of the negative runoff. This finding indicates that CS of carbonate weathering is an indispensable part of China's terrestrial carbon sink system. The research pattern of this study was important for further improving the accuracy of the estimation for the global carbonate weathering carbon sink.
引文
Beaulieu E,Goddéris Y,Donnadieu Y,Labat D,Roelandt C.2012.High sensitivity of the continental-weathering carbon dioxide sink to future climate change.Nat Clim Change,2:346-349
    Breiman L.1996.Bagging predictors.Machine Learn,24:123-140
    Breiman L.2001.Random forest.Machine Learn,45:5-32
    Brook G A,Folkoff M E,Box E O.2010.A world model of soil carbon dioxide.Earth Surf Process Landf,8:79-88
    Cao J H,Jiang Z C,Yuan D X,Xia R Y,Zhang C.2017.The progress in the study of the karst dynamic system and global changes in the past 30years(in Chinese).Geol China,44:874-900
    Cao J H,Yang H,Kang Z Q.2011.Preliminary regional estimation of carbon sink flux by carbonate rock corrosion:A case study of the Pearl River Basin.Chin Sci Bull,56:3766-3773
    Chen M Y,Shi W,Xie P P,Silva V B S,Kousky V E,Higgins W R,Janowiak J E.2008.Assessing objective techniques for gauge-based analyses of global daily precipitation.J Geophys Res,113:D04110
    Dreybrodt W.1988.Processes in Karst Systems.Berlin:Springer-Verlag.288
    Gaillardet J,DupréB,Louvat P,Allègre C J.1999.Global silicate weathering and CO2consumption rates deduced from the chemistry of large rivers.Chem Geol,159:3-30
    Gombert P.2002.Role of karstic dissolution in global carbon cycle.Glob Planet Change,33:177-184
    Guo Z D,Hu H F,Li P,Li N Y,Fang J Y.2013.Spatio-temporal changes in biomass carbon sinks in China’s forests from 1977 to 2008.Sci China Life Sci,56:661-671
    Ho T K.1998.The random subspace method for constructing decision forests.IEEE Trans Pattern Anal Machine Intell,20:832-844
    Jiang Z C,Qin X Q,Cao J H,Jiang X Z,He S Y,Luo W Q.2011.Calculation of atmospheric CO2sink formed in karst progresses of the karst divided regions in China(in Chinese).Carsol Sin,30:363-367
    Li H W,Wang S J,Bai X Y,Luo W J,Tang H,Cao Y,Wu L H,Chen F,Li Q,Zeng C,Wang M M.2018.Spatiotemporal distribution and national measurement of the global carbonate carbon sink.Sci Total Environ,643:157-170
    Li J Y,Zhang J.2003.Chemical weathering processes and atmospheric CO2consumption in the yellow river drainage basin(in Chinese).Mar Geol Quat Geol,23:43-49
    Li P C,Guo M,Wang L X,Li Q L,Xu B,Li J Y,Zheng F M.2011.Research of dynamics and relationship of precipitation and temperature in the recent 60 years in China(in Chinese).Eng Sci,13:29-36
    Liu S H,Yan D H,Wang H,Li C Z,Qin T L,Weng B S,Xing Z Q.2016.Evaluation of TRMM 3B42V7 at the basin scale over mainland China(in Chinese).Adv Water Sci,27:639-651
    Liu Z H,Dreybrodt W,Han J,Li H J.2005.Equilibrium chemistry of the CaCO3-CO2-H2O system and discussions(in Chinese).Carsol Sin,24:1-14
    Liu Z H,Dreybrodt W,Wang H J.2010.A new direction in effective accounting for the atmospheric CO2budget:Considering the combined action of carbonate dissolution,the global water cycle and photosynthetic uptake of DIC by aquatic organisms.Earth-Sci Rev,99:162-172
    Liu Z H,Dreybrodt W.2012.Comparison of carbon sequestration capacity between carbonate weathering and forests:The necessity to change traditional ideas and methods of study of carbon sinks(in Chinese).Carsol Sin,31:345-348
    Liu Z H,Macpherson G L,Groves C,Martin J B,Yuan D X,Zeng S B.2018.Large and active CO2uptake by coupled carbonate weathering.Earth-Sci Rev,182:42-49
    Liu Z,Zhao J.2000.Contribution of carbonate rock weathering to the atmospheric CO2sink.Environ Geol,39:1053-1058
    Ma Z G,Fu C B.2005.Decadal variations of arid and semi-arid boundary in China(in Chinese).Chin J Geophys,48:519-525
    Martin J B.2016.Carbonate minerals in the global carbon cycle.Chem Geol,449:58-72
    Plummer L N,Busenberg E.1982.The solubilities of calcite,aragonite and vaterite in CO2-H2O solutions between 0 and 90°C,and an evaluation of the aqueous model for the system CaCO3-CO2-H2O.Geochim Cosmochim Acta,46:1011-1040
    Pu J B,Jiang Z C,Yuan D X,Zhang C.2015.Some opinions on rockweathering-related carbon sinks from the IPCC fifth assessment report(in Chinese).Adv Earth Sci,30:1081-1090
    Qin X Q,Liu P Y,Huang Q B,Zhang L K.2013.Estimation of atmospheric/soil CO2consumption by rock weathering in the Pearl River Valley(in Chinese).Acta Geosci Sin,34:455-462
    Qiu D S,Zhuang D F,Hu Y F,Yao R.2004.Estimation of carbon sink capacity caused by rock weathering in China(in Chinese).Earth Sci-JChina Univ Geosci,29:177-182
    Reshef D N,Reshef Y A,Finucane H K,Grossman S R,McVean G,Turnbaugh P J,Lander E S,Mitzenmacher M,Sabeti P C.2011.Detecting novel associations in large data sets.Science,334:1518-1524
    Song X W,Gao Y,Wen X F,Guo D L,Yu G R,He N P,Zhang J Z.2016.Rock-weathering-related carbon sinks and associated ecosystem service functions in the karst critical zone in China(in Chinese).Acta Geogr Sin,71:1926-1938
    Sun R,Wu Z X,Chen B Q,Yang C.2016.Spatio-temporal patterns of climatic changes in Hainan Island in recent 55 years(in Chinese).JMeteorol Res Appl,37:1-7
    Wang J A,Zuo W.2010.Geographic Atlas of China.Beijing:China Cartographic Publishing House.362
    Wissbrun K F,French D M,Patterson Jr A.1954.The true ionization constant of carbonic acid in aqueous solution from 5°to 45°.J Phys Chem,58:693-695
    Yan H,Wang S Q,Wang J B,Lu H Q,Guo A H,Zhu Z C,Myneni R B,Shugart H H.2016.Assessing spatiotemporal variation of drought in China and its impact on agriculture during 1982-2011 by using PDSIindices and agriculture drought survey data.J Geophys Res,121:2283-2298
    Zeng S B,Jiang Y J,Liu Z H.2016.Assessment of climate impacts on the karst-related carbon sink in SW China using MPD and GIS.Glob Planet Change,144:171-181
    Zhang H,Wu P B,Yin A J,Yang X H,Zhang M,Gao C.2017.Prediction of soil organic carbon in an intensively managed reclamation zone of eastern China:A comparison of multiple linear regressions and the random forest model.Sci Total Environ,592:704-713
    Zhang J P,Zhang L B,Xu C,Liu W L,Qi Y,Wo X.2014.Vegetation variation of mid-subtropical forest based on MODIS NDVI data-Acase study of Jinggangshan City,Jiangxi Province.Acta Ecol Sin,34:7-12
    Zhang L K,Qin X Q,Liu P Y,Huang Q B.2016.Chemical denudation rate and atmospheric CO2consumption by H2CO3and H2SO4in the Yangtze River Catchment(in Chinese).Acta Geol Sin,90:1933-1944
    Zhang N,Jin J X,Tong C F,Zhang H L,Qu Z Y.2017.Spatiotemporal variation of evapotranspiration of referred crops and the affecting factors in Tibet(in Chinese).Arid Zone Res,34:1027-1034

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700