用户名: 密码: 验证码:
基于ASTER-GDEM数据的浙东四明山地貌特征研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geomorphic characteristics of the Siming Mountain(Zhejiang,China) based on ASTER-GDEM data analysis
  • 作者:许锐 ; 戴雪荣 ; 师育新 ; 郑丽波 ; 何姗姗
  • 英文作者:XU Rui;DAI Xue-rong;SHI Yu-xin;ZHENG Li-bo;HE Shan-shan;School of Geographic Sciences,East China Normal University;Zhejiang Institute of Hydrogeology & Engineering Geology;
  • 关键词:ASTER-GDEM数据 ; 面积-高程积分 ; 地貌形态特征 ; 四明山
  • 英文关键词:ASTER-GDEM data;;hypsometric integral;;geomorphic characteristics;;Siming Mountain
  • 中文刊名:HDSZ
  • 英文刊名:Journal of East China Normal University(Natural Science)
  • 机构:华东师范大学地理科学学院;浙江省水文地质工程地质大队;
  • 出版日期:2018-01-25
  • 出版单位:华东师范大学学报(自然科学版)
  • 年:2018
  • 期:No.197
  • 基金:国家自然科学基金(41771017,41371214);; 浙江省余姚市旅游局委托项目
  • 语种:中文;
  • 页:HDSZ201801015
  • 页数:9
  • CN:01
  • ISSN:31-1298/N
  • 分类号:159-167
摘要
基于ASTER-GDEM数据,运用ArcGIS空间分析功能,通过地势起伏度、条带分析及面积-高程积分三种方法,探讨了浙江东部四明山山地地貌的形态特征.结果表明,四明山由于受断裂构造控制的影响,主体呈NE-SW向展布,中山、低山、丘陵和山麓平原的面积分别占0.6%、16.2%、32.7%和50.5%,山地起伏度较小(平均约81m).条带分析表明,山顶残存有多处面积大小不等的古夷平面,它们的高程与玄武岩台地的高程基本一致,南部高出北部约300 m.山地各子流域的面积-高程积分分析表明,HI值在0~0.35、0.35~0.45和0.45~0.60区间段分别占47.31%、30.58%和22.11%,分别对应老年期、壮年(偏老)期和壮年期的地貌发育阶段.山地目前主要受外力剥蚀的影响.
        Based on ASTER-GDEM data, the geomorphic characteristics of the Siming Mountain(Zhejiang, China) are analyzed using ArcGIS. Parameters describing local relief, the Swath profile and Hypsometric Integral(HI) are applied. The results show that the Siming Mountain of NE-SW is controlled by fault structures. Area occupied by mid-elevation mountain, low-elevation mountain, hill and foothill is 0.6%, 16.2%, 32.7%,and 50.5% respectively; the mid-and low-elevation mountain have a low amplitude of relief(about 81 m). Swath profile analysis shows that the top of the Siming Mountain exhibits remnants of planation surface. When the planation surface was formed, the northeast tectonic activity was resurrected, which caused the basalt to cover it. The results show that the elevation of planation surface is close to the basalt elevation, whereby the southern parts of the mountain are higher by about 300 m than the north. The Hypsometric Integral analysis of each sub-basin reveals HI values are 0-0.35, 0.35-0.45 and 0.45-0.60, accounting for 47.31%, 30.58% and 22.11%. In this paper, the geomorphological features of the study area are simply divided by the HI value. It is found that the HI values in the study area are less than 0.6, and the landforms in the mature stage are subdivided according to elevation distribution in the EP chart, which are the older stage and the typical mature stage. The rest is corresponding to the old age of the landform, which indicates that the study area is now dominated by external force denudation.
引文
[1]MILLER C L,LAFLAMME R A.The digital terrain model-theory and application[J].Photogrammetric Engineering,1958,24(3):433-442.
    [2]胡最,汤国安,闾国年.GIS作为新一代地理学语言的特征[J].地理学报,2012,67(7):867-877.
    [3]宋晓猛,张建云,占车生,等.基于DEM的数字流域特征提取研究进展[J].地理科学进展,2013,32(1):31-40.
    [4]SZEKELY B.On the surface of the Eastern Alps:a DEM study[R].Budapest:Eotvos Lorand University,2001:1-124.
    [5]陆传豪,代富强,周启刚.紫色土区小流域土壤保持服务功能的空间分布特征[J].水土保持通报,2016,36(1):308-314.
    [6]钱程,崔天日,李林川,等.ASTER-GDEM数据在大兴安岭北段地貌形态分析中的应用[J].地质力学学报,2013,19(1):82-92.
    [7]JENSON K,DOMINGUE O.Extracting topographic structure from digital elevation data for geographic information system analysis[J].Sensing,1988,54(11):1593-1600.
    [8]赵洪壮,李有利,杨景春,等.基于DEM数据的北天山地貌形态分析[J].地理科学,2009,29(3):445-449.
    [9]BURBANK D W.Characteristic size of relief[J].Nature,1992,359(6395):483-484.
    [10]FIELDING E J.Morphotectonic evolution of the himalayas and tibetan plateau[G]//SUMMERFIELD M A.Geomorphology and Global Tectonics.London:John Wiley&Sons Press Ltd,2000:201-222.
    [11]KUHNI A,PFIFFNER O A.The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure:topographic analysis from a 250-m DEM[J].Geomorphology,2001,41(4):285-307.
    [12]STRAHLER A N.Hypsometric(area-altitude)analysis of erosional topography[J].Geological Society of America Bulletin,1952,63(11):1117-1142.
    [13]STRAHLER A N.Quantitative analysis of watershed geomorphology[J].Transactions American Geophysical Union,1957,38(6):913-920.
    [14]STRAHLER A N.Quantitative geomorphology of drainage basins and channel networks[G]//CHOW V T.Handbook of Applied Hydrology.New York:McGraw-Hill Book Company,1964:439-476.
    [15]卢炳生,竺国强,董传万,等.拟建余姚市四明山地质公园综合考察报告[R].浙江宁波:浙江省水文工程地质大队,2008.
    [16]浙江省水文工程地质大队宁波矿勘院.浙东沿海中生代火山-侵入活动、构造演化及成矿规律[M].福州:福建省地图出版社,2002.
    [17]单莉莉,张晋飚,许红根,等.四明山夷平面与玄武岩复合台地景观特征与开发研究[J].山西农业科学,2010,38(8):41-44.
    [18]马振华,李小苗,郭本泓,等.青藏高原东北缘马衔山夷平面特征指标的提取与分析[J].地理学报,2016,71(3):400-411.
    [19]汤国安.数字高程模型教程[M].北京:科学出版社,2010.
    [20]王玲,同小娟.基于变点分析的地形起伏度研究[J].地理与地理信息科学,2007,23(6):65-67.
    [21]韩海辉,高婷,易欢,等.基于变点分析法提取地势起伏度——以青藏高原为例[J].地理科学,2012(1):101-104.
    [22]张学儒,官冬杰,牟凤云,等.基于ASTER-GDEM数据的青藏髙原东部山区地形起伏度分析[J].地理与地理信息科学,2012,28(3):11-14.
    [23]MONTGOMERY D R,BRANDON M T.Topographic controls on erosion rates in tectonically active mountain ranges[J].Earth&Planetary Science Letters,2002,201(3/4):481-489.
    [24]中国科学院地貌图集编辑委员会.中华人民共和国地貌图集(1:100万)[M].北京:科学出版社,2009.
    [25]卢炳生,张环,林金波.四明山夷平面特征及成因[J].现代矿业,2013,29(3):56-58.
    [26]PIKE R J,WILSON S E.Elevation-relief ratio,hypsometric integral,and geomorphic area-altitude analysis[J].Geological Society of America Bulletin,1971,82(4):1079-1083.
    [27]祝士杰,汤国安,李发源,等.基于DEM的黄土高原面积高程积分研究[J].地理学报,2013,68(7):921-932.
    [28]常直杨,王建,白世彪,等.面积髙程积分值计算方法的比较[J].干旱区资源与环境,2015,29(3):171-175.
    [29]OHMORI H.Changes in the hypsometric curve through mountain building resulting from concurrent tectonics and denudation[J].Geomorphology,1993,8(4):263-277.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700