用户名: 密码: 验证码:
梯度磁场在生物大分子研究中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Applications of gradient magnetic fields in studies of biological macromolecules
  • 作者:刘悦 ; 吴子庆 ; 刘雅丽 ; 周雅青 ; 商澎 ; 尹大川
  • 英文作者:Yue Liu;Ziqing Wu;Yali Liu;Yaqing Zhou;Peng Shang;Dachuan Yin;Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University;School of Life Sciences, Northwestern Polytechnical University;Shenzhen Research Institute of Northwestern Polytechnical University;
  • 关键词:梯度磁场 ; 生物大分子 ; 生物分子 ; 蛋白质 ; 模拟微重力 ; 磁力
  • 英文关键词:gradient magnetic field;;biological macromolecules;;biomolecules;;protein;;simulated microgravity;;magnetic force
  • 中文刊名:KXTB
  • 英文刊名:Chinese Science Bulletin
  • 机构:西北工业大学空间生物实验模拟技术国防重点学科实验室;西北工业大学生命学院;西北工业大学深圳研究院;
  • 出版日期:2019-03-07 09:27
  • 出版单位:科学通报
  • 年:2019
  • 期:v.64
  • 基金:国家自然科学基金(U1632126);; 载人航天预研项目(17430206)资助
  • 语种:中文;
  • 页:KXTB201908007
  • 页数:13
  • CN:08
  • ISSN:11-1784/N
  • 分类号:68-80
摘要
磁场作为一种物理环境,广泛应用于各行各业.随着磁体技术的飞速发展,磁场在科学研究与实践应用中的重要性日趋凸显.在生物大分子研究方向,磁场也发挥了重要的作用.其中,梯度磁场作为磁场的一种,由于其提供的资源除磁场外,还有磁场梯度,使其具备除常规磁场效应(择优取向、晶体质量改善等)外的其他应用价值(如溶液的对流控制、晶体质量改善、分离纯化等),因此备受关注.梯度磁场环境下涉及生物大分子的研究,主要集中在生物大分子的结晶、分离与纯化,以及自组装等方向.充分利用梯度磁场,可以实现高质量的生物大分子晶体生长、高效低成本的生物大分子分离与纯化等重要应用.因此,梯度磁场在生物大分子结构解析技术、生物药物制备技术等方向具有十分重要的价值.本文将从梯度磁场物理环境对生物大分子溶液体系的基础性影响角度出发,回顾并讨论梯度磁场在生物大分子研究中的应用,并对该领域的发展前景进行了预期.
        As a kind of physical environment, magnetic fields are widely used in many different fields, ranging from scientific research to industrial production. With the rapid development of magnetic technology, the importance of magnetic fields in scientific research and practical applications has become increasingly prominent. One notable research field is the application of magnetic fields in the research of biological macromolecules. In this research field, gradient magnetic fields, as one kind of magnetic fields, have attracted much attention and have been widely used in various research fields because they can induce effects caused not only by a magnetic field but also by a magnetic field gradient. This feature makes magnetic fields applicable in many research areas, except for those directly related to the magnetic field itself. So far, the application-based research of gradient magnetic fields involving biological macromolecules has mainly focused on the crystallization, separation and purification as well as the self-assembly of biological macromolecules. Since biological macromolecules usually need to complete various processes in their solution state, the influence of gradient magnetic fields on biological macromolecules is mainly realized through their influence on the solution system. It has been found that a gradient magnetic field can affect convection in biological macromolecular solutions through Lorentz forces and magnetization forces; in practice, partial or even complete suppression of convection can often be observed. In addition, other conditions or parameters of solutions are significantly affected by the gradient magnetic field. For example, in a gradient magnetic field, the following phenomena may occur:(1) superparamagnetic particles in the solution are strongly attracted by the magnetization force, and quick clustering of these particles can happen;(2) the solution itself may have some kind of solution structure;(3) the aggregation of biological macromolecules may show a preferred orientation in the magnetic field direction;(4) the diffusion coefficient of biological macromolecules in the solution will decrease;(5) the solution's viscosity will increase, and so on. As a result of these effects, the following phenomena can be observed: during the crystallization of biological macromolecules, a preferred orientation of the crystals and crystal quality improvement of the biological macromolecules can happen; in the process of separation and purification of biological macromolecules, high-purity and highly bioactive macromolecules can be obtained rapidly and efficiently; and, in the process of the self-assembly of biological macromolecules, abnormal behaviours can occur. Based on these specific effects, the utilization of gradient magnetic fields can be further explored in more professional applications. Currently, the most common applications include the utilization of gradient magnetic fields for obtaining highquality protein crystals and the achievement of highly efficient and low-cost separation and purification of biological macromolecules. It is obvious that gradient magnetic fields have very important application value in biological macromolecular structure analysis technology, biological drug preparation and preservation technology, theoretical studies involving biomolecular phase separation and nucleation processes, and many other directions. In this paper, the fundamental effects of the gradient magnetic field on the solution of biological macromolecules are reviewed, the applications based on the effects are discussed, and the future prospects in this field are anticipated.
引文
1 Kardjilov N,Manke I,Woracek R,et al.Advances in neutron imaging.Mater Today,2018,21:652-672
    2 Yao L,Xu S J.Detection of magnetic nanomaterials in molecular imaging and diagnosis applications.Nanotechnol Rev,2014,3:247-268
    3 Scheunert G,Heinonen O,Hardeman R,et al.A review of high magnetic moment thin films for microscale and nanotechnology applications.Appl Phys Rev,2016,3:011301
    4 Vulusala G V S,Madichetty S.Application of superconducting magnetic energy storage in electrical power and energy systems:A review.Int J Energ Res,2018,42:358-368
    5 Noh S H,Moon S H,Shin T H,et al.Recent advances of magneto-thermal capabilities of nanoparticles:From design principles to biomedical applications.Nano Today,2017,13:61-76
    6 Jha P K,Xanthakis E,Jury V,et al.An overview on magnetic field and electric field interactions with ice crystallisation:Application in the case of frozen food.Crystals,2017,7:299
    7 Otero L,Rodriguez A C,Mateos M P,et al.Effects of magnetic fields on freezing:Application to biological products.Compr Rev Food Sci F,2016,15:646-667
    8 Zhang H,Liu X L,Zhang Y F,et al.Magnetic nanoparticles based cancer therapy:Current status and applications.Sci China Life Sci,2018,61:400-414
    9 Zheng L,Chen L G,Huang H B,et al.An overview of magnetic micro-robot systems for biomedical applications.Microsyst Technol,2016,22:2371-2387
    10 Mai T,Hilt J Z.Magnetic nanoparticles:Reactive oxygen species generation and potential therapeutic applications.J Nanopart Res,2017,19:253
    11 Srinoi P,Chen Y T,Vittur V,et al.Bimetallic nanoparticles:Enhanced magnetic and optical properties for emerging biological applications.Appl Sci Basel,2018,8:1106
    12 Galindo V,Gerbeth G,Ammon W V,et al.Crystal growth melt flow control by means of magnetic fields.Energ Convers Manage,2002,43:309-316
    13 Shiraishi Y,Takano K,Matsubara J,et al.Growth of silicon crystal with a diameter of 400 mm and weight of 400 kg.J Cryst Growth,2001,229:17-21
    14 Series R W,Hurle D T J.The use of magnetic-fields in semiconductor crystal-growth.J Cryst Growth,1991,113:305-328
    15 Ganapathysubramanian B,Zabaras N.Control of solidification of non-conducting materials using tailored magnetic fields.J Cryst Growth,2005,276:299-316
    16 Zhong C W,Wakayama N I.Effect of a high magnetic field on the viscosity of an aqueous solution of protein.J Cryst Growth,2001,226:327-332
    17 Qi J W,Wakayama N I.The combined effects of magnetic field and magnetic field gradients on convection in crystal growth.Phys Fluids,2004,16:3450-3459
    18 Yin D C,Inatomi Y,Kuribayashi K.Study of lysozyme crystal growth under a strong magnetic field using a mach-zehnder interferometer.J Cryst Growth,2001,226:534-542
    19 Yanagiya S,Sazaki G,Durbin S D,et al.Effects of a magnetic field on the growth rate of tetragonal lysozyme crystals.J Cryst Growth,2000,208:645-650
    20 Sazaki G,Durbin S D,Miyashita S,et al.Magnetic damping of the temperature-driven convection in NaCl aqueous solution using a static and homogeneous field of 10 T.Jpn J Appl Phys,1999,38:L842-L844
    21 Yin D C.Protein crystallization in a magnetic field.Prog Cryst Growth Ch,2015,61:1-26
    22 Ramachandran N,Leslie F W.Using magnetic fields to control convection during protein crystallization-analysis and validation studies.JCryst Growth,2005,274:297-306
    23 Poodt P W G,Heijna M C R,Christianen P C M,et al.Using gradient magnetic fields to suppress convection during crystal growth.Cryst Growth Des,2006,6:2275-2280
    24 Helliwell J R,Chayen N E.Crystallography:A down-to-earth approach.Nature,2007,448:658-659
    25 Heijna M C R,Poodt P W G,Tsukamoto K,et al.Magnetically controlled gravity for protein crystal growth.Appl Phys Lett,2007,90:264105
    26 Poodt P W G,Heijna M C R,Christianen P C M,et al.A comparison between simulations and experiments for microgravity crystal growth in gradient magnetic fields.Cryst Growth Des,2008,8:2200-2204
    27 Wang L B,Wakayama N I.Dependence of aspect ratio on magnetic damping of natural convection in low-conducting aqueous solution in a rectangular cavity.Int J Heat Fluid Fl,2002,23:92-95
    28 Zhong C W,Wang L B,Wakayama N I.Effect of a high magnetic field on protein crystal growth-Magnetic field induced order in aqueous protein solutions.J Cryst Growth,2001,233:561-566
    29 Yin D C,Inatomi Y,Wakayama N I,et al.An investigation of magnetic field effects on the dissolution of lysozyme crystal and related phenomena.Acta Crystallogr D,2002,58:2024-2030
    30 Pareja-Rivera C,CuéllarCruz M,Esturauescofet N,et al.Recent advances in the understanding of the influence of electric and magnetic fields on protein crystal growth.Cryst Growth Des,2017,17:135-145
    31 Yan E K,Zhang C Y,He J,et al.An overview of hardware for protein crystallization in a magnetic field.Int J Mol Sci,2016,17:1906
    32 Tsukui S,Kimura F,Kusaka K,et al.Neutron and X-ray single-crystal diffraction from protein microcrystals via magnetically oriented microcrystal arrays in gels.Acta Crystallogr D,2016,72:823-829
    33 Klara S S,Saboe P O,Sines I T,et al.Magnetically directed two-dimensional crystallization of OmpF membrane proteins in block copolymers.J Am Chem Soc,2016,138:28-31
    34 Rodriguez-Romero A,Esturau-Escofet N,Pareja-Rivera C,et al.Crystal growth of high-quality protein crystals under the presence of an alternant electric field in pulse-wave mode,and a strong magnetic field with radio frequency pulses characterized by X-ray diffraction.Crystals,2017,7:179
    35 Sazaki G,Yoshida E,Komatsu H,et al.Effects of a magnetic field on the nucleation and growth of protein crystals.J Cryst Growth,1997,173:231-234
    36 Moreno A,Quirozgarcia B,Yokaichiya F,et al.Protein crystal growth in gels and stationary magnetic fields.Cryst Res Technol,2007,42:231-236
    37 Wakayama N I,Ataka M,Abe H.Effect of a magnetic field gradient on the crystallization of hen lysozyme.J Cryst Growth,1997,178:653-656
    38 Okada H,Hirota N,Matsumoto S,et al.Development of a protein crystal formation system with a superconducting magnet.IEEE Trans Appl Supercon,2013,23:370010439
    39 Gavira J A,Garcia-Ruiz J M.Effects of a magnetic field on lysozyme crystal nucleation and growth in a diffusive environment.Cryst Growth Des,2009,9:2610-2615
    40 Yanagiya S I,Sazaki G E N,Durbin S D,et al.Effect of a magnetic field on the orientation of hen egg-white lysozyme crystals.J Cryst Growth,1999,196:319-324
    41 Rothgeb T M,Oldfield E.Nuclear magnetic resonance of heme protein crystals.J Biol Chem,1981,256:1432-1446
    42 Sakurazawa S,Kubota T,Ataka M.Orientation of protein crystals grown in a magnetic field.J Cryst Growth,1999,196:325-331
    43 Astier J P,Veesler S,Boistelle R.Protein crystals orientation in a magnetic field.Acta Crystallogr D,1998,54:703-706
    44 Tanimoto Y,Yamaguchi R,Kanazawa Y,et al.Magnetic orientation of lysozyme crystals.B Chem Soc Jpn,2002,75:1133-1134
    45 Numoto N,Shimizu K,Matsumoto K,et al.Observation of the orientation of membrane protein crystals grown in high magnetic force fields.J Cryst Growth,2013,367:53-56
    46 Yin D C,Wakayama N I,Wada H,et al.Significant effects of magnetic and gravitational fields on the morphology of protein crystals(orthorhombic lysozyme crystals grown using NiCl2 as crystallization agent).J Phys Chem B,2003,107:14140-14144
    47 Maki S,Tanimoto Y,Udagawa C,et al.In situ observation of containerless protein crystallization by magnetically levitating crystal growth.Jpn J Appl Phys,2016,55:035505
    48 Hamai M,Mogi I,Tagami M,et al.Crystal growth of ammonium chloride in magnetic levitation conditions.J Cryst Growth,2000,209:1013-1017
    49 Yu J D,Koshikawa N,Arai Y,et al.Containerless solidification of oxide material using an electrostatic levitation furnace in microgravity.JCryst Growth,2001,231:568-576
    50 Mathiak G,Egry I,Hennet L,et al.Aerodynamic levitation and inductive heating-A new concept for structural investigations of undercooled melts.Int J Thermophys,2005,26:1151-1166
    51 Notthoff C,Franz H,Hanfland M,et al.Electromagnetic levitation apparatus for investigations of the phase selection in undercooled melts by energy-dispersive X-ray diffraction.Rev Sci Instrum,2000,71:3791-3796
    52 Santesson S,Nilsson S.Airborne chemistry:Acoustic levitation in chemical analysis.Anal Bioanal Chem,2004,378:1704-1709
    53 Motokawa M,Mogi I,Tagami M,et al.Magnetic levitation experiments in Tohoku university.Phys B,2001,294:729-735
    54 Lu H M,Yin D C,Li H S,et al.A containerless levitation setup for liquid processing in a superconducting magnet.Rev Sci Instrum,2008,79:093903
    55 Sato T,Yamada Y,Saijo S,et al.Enhancement in the perfection of orthorhombic lysozyme crystals grown in a high magnetic field(10 T).Acta Crystallogr D,2010,56:1079-1083
    56 Sato T,Yamada Y,Saijo S,et al.Improvement in diffraction maxima in orthorhombic HEWL crystal grown under high magnetic field.JCryst Growth,2001,232:229-236
    57 Nakamura A,Ohtsuka J,Miyazono K I,et al.Improvement in quality of protein crystals grown in a high magnetic field gradient.Cryst Growth Des,2012,12:1141-1150
    58 Cao H L,Sun L H,Li J,et al.A quality comparison of protein crystals grown under containerless conditions generated by diamagnetic levitation,silicone oil and agarose gel.Acta Crystallogr D,2013,69:1901-1910
    59 Lin S X,Zhou M,Azzi A,et al.Magnet used for protein crystallization:novel attempts to improve the crystal quality.Biochem Bioph Res Co,2000,275:274-278
    60 Hirose R,Hayashi S,Watanabe Y,et al.Development of a superconducting magnet for high magnetic force field application.TEEE Trans Appl Supercon,2007,17:2299-2302
    61 Saijo S,Yamada Y,Sato T,et al.Structural consequences of hen egg-white lysozyme orthorhombic crystal growth in a high magnetic field:Validation of X-ray diffraction intensity,conformational energy searching and quantitative analysis of B factors and mosaicity.Acta Crystallogr D,2010,61:207-217
    62 Yin D C,Wakayama N I,Harata K,et al.Formation of protein crystals(orthorhombic lysozyme)in quasi-microgravity environment obtained by superconducting magnet.J Cryst Growth,2004,270:184-191
    63 Maki S,Oda Y,Ataka M.High-quality crystallization of lysozyme by magneto-Archimedes levitation in a superconducting magnet.JCryst Growth,2004,261:557-565
    64 Kinoshita T,Ataka M,Warizaya M,et al.Improving quality and harvest period of protein crystals for structure-based drug design:Effects of a gel and a magnetic field on bovine adenosine deaminase crystals.Acta Crystallogr D,2003,59:1333-1335
    65 Sato T,Hara S,Matsui T,et al.A unique dye-decolorizing peroxidase,DyP,from thanatephorus cucumeris Dec 1:Heterologous expression,crystallization and preliminary X-ray analysis.Acta Crystallogr D,2010,60:149-152
    66 Tu J L,Chin K H,Wang A H,et al.The crystallization of apo-form UMP kinase from xanthomonas campestris is significantly improved in a strong magnetic field.Acta Crystallogr F,2007,63:438-442
    67 Ataka M,Wakayama N I.Effects of a magnetic field and magnetization force on protein crystal growth.Why does a magnet improve the quality of some crystals?Acta Crystallogr D,2002,58:1708-1710
    68 Poodt P W G,Heijna M C R,Tsukamoto K,et al.Suppression of convection using gradient magnetic fields during crystal growth of NiSO4?6H2O.Appl Phys Lett,2005,87:214105
    69 Yin D C,Lu H M,Geng L Q,et al.Growing and dissolving protein crystals in a levitated and containerless droplet.J Cryst Growth,2008,310:1206-1212
    70 Iranmanesh M,Hulliger J.Magnetic separation:Its application in mining,waste purification,medicine,biochemistry and chemistry.Chem Soc Rev,2017,46:5925-5934
    71 Dunnill P,Lilly M D.Purification of enzymes using magnetic bio-affinity materials.Biotechnol Bioeng,1974,16:987-990
    72 Zhang Y,Li D,Yu M,et al.Fe3O4/PVIM-Ni2+magnetic composite microspheres for highly specific separation of histidine-rich proteins.ACS Appl Mater Inter,2014,6:8836-8844
    73 Fernandes C S M,Santos R D,Ottengy S,et al.Affitins for protein purification by affinity magnetic fishing.J Chromatogr A,2016,1457:50-58
    74 Zhou Z,Hao N,Zhang Y,et al.A novel universal colorimetric sensor for simultaneous dual target detection through DNA-directed self-assembly of graphene oxide and magnetic separation.Chem Commun,2017,53:7096-7099
    75 Brown P,Bromberg L,Rialhermida M I,et al.Magnetic surfactants and polymers with gadolinium counterions for protein separations.Langmuir,2016,32:699-705
    76 Liu Y J,Wang Y Z,Dai Q Z,et al.Magnetic deep eutectic solvents molecularly imprinted polymers for the selective recognition and separation of protein.Anal Chim Acta,2016,936:168-178
    77 Chen F F,Zhao W F,Zhang J J,et al.Magnetic two-dimensional molecularly imprinted materials for the recognition and separation of proteins.Phys Chem Chem Phys,2016,18:718-725
    78 Schwaminger S P,Blank-Shim S A,Scheifele I,et al.Design of interactions between nanomaterials and proteins:A highly affine peptide tag to bare iron oxide nanoparticles for magnetic protein separation.Biotechnol J,2018:e1800055
    79 Garcia P F,Brammen M,Wolf M,et al.High-gradient magnetic separation for technical scale protein recovery using low cost magnetic nanoparticles.Sep Purif Technol,2015,150:29-36
    80 Ebeler M,Lind O,Norrman N,et al.One-step integrated clarification and purification of a monoclonal antibody using protein A mag sepharose beads and a cGMP-compliant high-gradient magnetic separator.New Biotechnol,2018,42:48-55
    81 Torbet J,Ronzière,M C.Magnetic alignment of collagen during self-assembly.Biochem J,1984,219:1057-1059
    82 Sun K W,Chang C C.Patterned self-assembly of magnetic biomolecules on semiconductor substrates.J Phys Chem Solids,2007,68:1211-1214
    83 Hoffmann C,Mazari E,Gosse C,et al.Magnetic control of protein spatial patterning to direct microtubule self-assembly.ACS Nano,2013,7:9647-9654
    84 Glade N,Beaugnon E,Tabony J.Ground-based methods reproduce space-flight experiments and show that weak vibrations trigger microtubule self-organisation.Biophys Chem,2006,121:1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700