用户名: 密码: 验证码:
白令海北部陆坡23ka以来古生产力变化及其对海冰扩张的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Paleoproductivity changes in the northern Bering Slope over the last 23 ka and the response to the sea-ice evolution
  • 作者:宋腾飞 ; 王宏雷 ; 陈漪馨 ; 李朝新 ; 朱爱美 ; 白亚之 ; 石学法 ; Gorbarenko ; Sergei ; Bosin ; Aleksandr ; 刘焱光
  • 英文作者:Song Tengfei;Wang Honglei;Chen Yixin;Li Chaoxin;Zhu Aimei;Bai Yazhi;Shi Xuefa;Gorbarenko Sergei;Bosin Aleksandr;Liu Yanguang;Key Laboratory of Marine Sedimentology and Environment Geology,First Institute of Oceanography,State Oceanic Administration;No.7 Geological Bridgade,Shandong Provincial Bureau of Geology & Mineral Resources;Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology;V.I.Il'ichev Pacific Oceanological Institute,Far East Branch of Russian Academy of Science;
  • 关键词:白令海北部陆坡 ; 冰筏碎屑 ; 古生产力 ; 海冰扩张
  • 英文关键词:northern Bering Slope;;ice rafting debris;;paleoproductivity;;sea-ice evolution
  • 中文刊名:SEAC
  • 机构:国家海洋局第一海洋研究所国家海洋局海洋沉积与环境地质重点实验室;山东省地质矿产勘查开发局第七地质队;青岛海洋科学与技术国家实验室海洋地质过程与环境功能实验室;V.I. Il'ichev Pacific Oceanological Institute,Far East Branch of Russian Academy of Science;
  • 出版日期:2018-05-15
  • 出版单位:海洋学报
  • 年:2018
  • 期:v.40
  • 基金:南北极环境综合调查与评估专项(CHINARE2017-03-02);; 国家自然科学基金(41476054,41106166)
  • 语种:中文;
  • 页:SEAC201805008
  • 页数:17
  • CN:05
  • ISSN:11-2055/P
  • 分类号:92-108
摘要
本文基于白令海北部陆坡ARC6-B11岩心的沉积物粒度、颜色反射率、有机碳/氮含量和高分辨率化学元素XRF扫描数据,结合底栖和浮游有孔虫AMS14C测年资料,重建了研究区23ka以来至中全新世的沉积记录,重点研究了海冰的扩张变化对生产力和沉积物输入的影响。研究结果显示,末次盛冰期白令海北部陆坡受到海冰南向扩张的影响而生产力较低,沉积物中砂粒级和冰筏碎屑(IRD)含量较高。HS 1时期由于受到常年冰的覆盖,沉积物中砂粒级和IRD含量存在低值,沉积物中较高的总有机碳(TOC)含量受陆源有机质的影响较大,异常的TOC含量峰值主要受到低海平面和海冰形成过程产生的富氧水团控制下的高浓度细粒物质携带的陆源有机质的快速沉积作用的影响,难以作为反映白令海古生产力的替代指标。B/A暖期和全新世生产力较高,在B/A暖期存在Ca/Ti峰值现象,Ca/Ti峰值现象的产生与碳酸盐补偿深度增加有关,水体通风条件的改变可能起到一定的作用,也不能忽视颗石藻对其产生的潜在影响。
        The gravity core ARC6-B11 recovered from the northern Bering Slope was analyzed to reconstruct the sedimentary record and paleoproductivity changes from 23 ka BP to the Middle Holocene.Based on geochemical,high-resolution core logging and AMS14 C data the variation of sediment input and productivity of the study area and it's response to the sea-ice evolution were discussed.Our results demonstrate that,on account of the southern extended sea-ice,the paleoproductivity is low during the Last Glacial Maximum,while the sand and ice rafting debris(IRD)contents of the sediments are high.But the sand and IRD contents decreased sharply during Heinrich Stadial1(HS 1)cold period because of the perennial sea-ice cover.The total organic carbon(TOC)content peaks during HS 1 could not be used as the paleoproductivity indicator due to the influence of the terrigenous organic matter.The abnormal peak value of the TOC content may relates to the redisposition of the shelf clay matter suspended by the oxygen enriched water mass influenced by the sea level change and sea-ice formation.The paleoproductivity is high during Blling/Allerd(B/A)and Holocene warm period,there are also Ca Peak Event and sedimentary laminae.The occurrence of Ca Peak Event in the B/A warming period is directly influenced by the deepening of carbonate compensation depth,but the alteration of ventilation and the coccolith bloom may play a certain role on it.
引文
[1]Cook M S,Keigwin L D,Sancetta C A.The deglacial history of surface and intermediate water of the Bering Sea[J].Deep-Sea Research PartⅡ:Topical Studies in Oceanography,2005,52(16):2163-2173.
    [2]Gorbarenko S A,Basov I A,Chekhovskaya M P,et al.Orbital and millennium scale environmental changes in the southern Bering Sea during the last glacial-Holocene:Geochemical and paleontological evidence[J].Deep-Sea Research PartⅡ:Topical Studies in Oceanography,2005,52(16/18):2174-2185.
    [3]Okazaki Y,Takahashi K,Asahi H.Productivity changes in the Bering Sea during the late Quaternary[J].Deep-Sea Research PartⅡ:Topical Studies in Oceanography,2005,52(16):2150-2162.
    [4]Itaki T,Uchida M,Kim S,et al.Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments:evidence from the radiolarian species Cycladophora davisiana[J].Journal of Quaternary Science,2009,24(8):856-865.
    [5]Brunelle B G,Sigman D M,Cook M S,et al.Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes[J].Paleoceanography,2007,22(1):306-316.
    [6]Jaccard S L,Haug G H,Sigman D M,et al.Glacial/interglacial changes in subarctic North Pacific stratification[J].Science,2005,308(5724):1003-1006.
    [7]Springer A M,Mcroy C P,Flint M V.The Bering Sea Green Belt:shelf-edge processes and ecosystem production[J].Fisheries Oceanography,2010,5(3/4):205-223.
    [8]Tyrrell T,Merico A,Waniek J J,et al.Effect of seafloor depth on phytoplankton blooms in high-nitrate,low-chlorophyll(HNLC)regions[J].Journal of Geophysical Research Biogeosciences,2015,110(G2):149-167.
    [9]Stabeno P J,Schumacher J D.The Physical Oceanography of the Bering Sea[J].University of Alaska Sea Grant,1999,4(10):385.
    [10]Harada N,Katsuki K,Nakagawa M,et al.Holocene sea surface temperature and sea ice extent in the Okhotsk and Bering Seas[J].Progress in Oceanography,2014,126(4):242-253.
    [11]Rella S F,Tada R,Nagashima K,et al.Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period[J].Paleoceanography,2012,27(3):189-200.
    [12]Kim S,Khim B K,Uchida M,et al.Millennial-scale paleoceanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71kyrs[J].Global&Planetary Change,2011,79(1/2):89-98.
    [13]Kuehn H,Lembkejene L,Gersonde R,et al.Laminated sediments in the Bering Sea reveal atmospheric teleconnections to Greenland climate on millennial to decadal timescales during the last deglaciation[J].Climate of the Past Discussions,2014,10(3):2215-2236.
    [14]Crusius J,Pedersen T F,Kienast S,et al.Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Blling-Allerd interval(14.7-12.9ka)[J].Geology,2004,32(7):633-636.
    [15]Ohkushi K,Itaki T,Nemoto N.Last Glacial-Holocene change in intermediate-water ventilation in the Northwestern Pacific[J].Quaternary Science Reviews,2003,22(14):1477-1484.
    [16]Zheng Y,Geen A V,Anderson R F,et al.Intensification of the Northeast Pacific oxygen minimum zone during the B9lling-Aller9d Warm Period[J].Paleoceanography,2000,15(5):528-536.
    [17]Cook M S,Ravelo A C,Mix A,et al.Tracing subarctic Pacific water masses with benthic foraminiferal stable isotopes during the LGM and late Pleistocene[J].Deep-Sea Research PartⅡ:Topical Studies in Oceanography,2016,125:84-95.
    [18]Caissie B E,Brigham-Grette J,Lawrence K T,et al.Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau,Bering Sea,as inferred from diatom,alkenone,and stable isotope records[J].Paleoceanography,2010,25(1):427-435.
    [19]Max L,Lembkejene L,Riethdorf J R,et al.Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation[J].Climate of the Past,2014,10(2):591-605.
    [20]Schlung S A,Ravelo A C,Aiello I W,et al.Millennial-scale climate change and intermediate water circulation in the Bering Sea from 90ka:A high-resolution record from IODP Site U1340[J].Paleoceanography,2013,28(1):54-67.
    [21]Meyer V D,Max L,Hefter J,et al.Glacial-to-Holocene evolution of sea surface temperature and surface circulation in the subarctic northwest Pacific and the Western Bering Sea[J].Paleoceanography,2016,31(7):916-927.
    [22]Niebauer H J.Variability in Bering Sea ice cover as affected by a regime shift in the North Pacific in the period 1947-1996[J].Journal of Geophysical Research,1998,103(103):27717-27737.
    [23]Feely R A,Sabine C L,Lee K,et al.In situ calcium carbonate dissolution in the Pacific Ocean[J].Global Biogeochemical Cycles,2002,16(4):1144.
    [24]Riethdorf J R,Nürnberg D,Max L,et al.Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180kyr[J].Climate of the Past,2013,9(3):1345-1373.
    [25]Max L,Riethdorf J R,Tiedemann R,et al.Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past15,000years[J].Paleoceanography,2012,27(3):PA3213.
    [26]Méheust M,Fahl K,Stein R.Variability in modern sea surface temperature,sea ice and terrigenous input in the sub-polar North Pacific and Bering Sea:Reconstruction from biomarker data[J].Organic Geochemistry,2013,57(4):54-64.
    [27]Gorbarenko S A,Wang P,Wang R,et al.Orbital and suborbital environmental changes in the southern Bering Sea during the last 50kyr[J].Palaeogeography Palaeoclimatology Palaeoecology,2010,286(2):97-106.
    [28]Méheust M,Stein R,Fahl K,et al.High-resolution IP25-based reconstruction of sea-ice variability in the western North Pacific and Bering Sea during the past 18,000years[J].Geo-Marine Letters,2016,36(2):101-111.
    [29]陈志华,陈毅,王汝建,等.末次冰消期以来白令海盆的冰筏碎屑事件与古海洋学演变记录[J].极地研究,2014,26(1):17-28.Chen Zhihua,Chen Yi,Wang Rujian,et al.Ice-rafted detritus events and Paleoceanographic records in the Bering Basin since the Last Deglaciation[J].Chinese Journal of Polar Research,2014,26(1):17-28.
    [30]王磊,王汝建,陈志华,等.白令海盆17ka以来的古海洋与古气候记录[J].极地研究,2014(1):29-38.Wang Lei,Wang Ruijian,Chen Zhihua,et al.Paleoceanographic and paleocliamtic records in the Bering Basin over the last 17ka[J].Chinese Journal of Polar Research,2014,26(1):29-38.
    [31]Kanematsu Y,Takahashi K,Kim S,et al.Changes in biogenic opal productivity with Milankovitch cycles during the last 1.3Ma at IODP Expedition 323Sites U1341,U1343,and U1345in the Bering Sea[J].Quaternary International,2013,310:213-220.
    [32]Khim B K,Kim S,Uchida M,et al.High organic carbon deposition in the northern margin of the Aleutian Basin(Bering Sea)before the last deglaciation[J].Ocean Science Journal,2010,45(4):203-211.
    [33]胡利民,石学法,刘焱光,等.白令海西部柱样沉积物中有机碳的地球化学特征与埋藏记录[J].海洋地质与第四纪地质,2015,35(3):37-47.Hu Limin,Shi Xuefa,Liu Yanguang,et al.Geochemical charicteristics and burial records of organic carbon in the colunm sediments from western Bering Sea[J].Marine Geology and Quaternary Geology,2015,35(3):37-47.
    [34]邹建军,石学法,白亚之,等.末次冰消期以来白令海古环境及古生产力演化[J].地球科学:中国地质大学学报,2012,37(S1):1-10.Zou Jianjun,Shi Xuefa,Bai Yazhi,et al.Paleoenvironment and paleoproductivity variations in the Bering Sea since the last deglacial[J].Earth Science:Journal of China University of Geoscience,2012,37(S1):1-10.
    [35]王汝建,李霞,肖文申,等.白令海北部陆坡100ka来的古海洋学记录及海冰的扩张历史[J].地球科学:中国地质大学学报,2005,30(5):550-558.Wang Rujian,Li Xia,Xiao Wenshen,et al.Paleoceangraphic records and sea ice extension history of the northern Bering Sea slope over the last100ka[J].Earth Science:Journal of China University of Geoscience,2005,30(5):550-558.
    [36]Gorbarenko S A.Stable isotope and lithologic evidence of Late-Glacial and Holocene oceanography of the northwestern Pacific and its marginal seas[J].Quaternary Research,1996,46(3):230-250.
    [37]Vanlaningham S,Pisias N G,Duncan R A,et al.Glacial-interglacial sediment transport to the Meiji Drift,northwest Pacific Ocean:Evidence for timing of Beringian outwashing[J].Earth&Planetary Science Letters,2009,277(1/2):64-72.
    [38]王春娟,刘焱光,董林森,等.白令海与西北冰洋表层沉积物粒度分布特征及其环境意义[J].海洋地质与第四纪地质,2015,35(3):1-9.Wang Chunjuan,Liu Yanguang,Dong Linsen,et al.The distribution pattern of the surface sediments in the Bering Sea and the western Arctic and its environmental implications[J].Marine Geology and Quaternary Geology,2015,35(3):1-9.
    [39]张海峰,王汝建,陈荣华,等.白令海北部陆坡全新世以来的生物标志物记录及其古环境意义[J].极地研究,2014(1):1-16.Zhang Haifeng,Wang Ruijian,Chen Ronghua,et al.Holocene biomarker records on the northern Bering Sea slope their paleoenvironmental implications[J].Chinese Journal of Polar Research,2014(1):1-16.
    [40]Kent D,Opdyke N D,Ewing M.Climate change in the north Pacific using ice-rafted detritus as a climatic indicator[J].Geological Society of America Bulletin,1971,82(10):2741-2754.
    [41]王汝建,肖文申,李文宝,等.北冰洋西部楚科奇海盆晚第四纪的冰筏碎屑事件[J].科学通报,2009(23):3761-3770.Wang Rujian,Xiao Wenshen,Li Wenbao,et al.Late Quaternary ice-rafted detritus events in the Chukchin Basin,western Arctic Ocean[J].Chinese Science Bulletin,2009(23):3761-3770.
    [42]Sampei Y,Matsumoto E.C/N ratios in a sediment core from Nakaumi Lagoon,southwest Japan-usefulness as an organic source indicator[J].Geochemical Journal,2008,35(35):189-205.
    [43]Andersen K K,Azuma N,Barnola J M,et al.High-resolution record of Northern Hemisphere climate extending into the last interglacial period.[J].Nature,2004,431(7005):147.
    [44]陈皎杰,刘焱光,葛淑兰,等.末次盛冰期以来兴凯湖的古环境演变——基于地磁场长期变化的年龄框架[J].第四纪研究,2014,34(3):528-539.Chen Jiaojie,Liu Yanguang,Ge Shulan,et al.Paleoenvironment evolution of the lake Khanka since the Last Glacial Maximium:age model reconstructed by secular variation of geomagnetic field[J].Quaternary Sciences,2004,34(3):528-539.
    [45]Blum P.Physical properties handbook:aguide to the shipboard measurement of physical properties of deep-sea cores[OL/EB].2017-10-30.http://www-odp.tamu.edu/publications/tnotes/tn26/TOC.HTM
    [46]Darby D A,Zimmerman P.Ice-rafted detritus events in the Arctic during the last glacial interval,and the timing of the Innuitian and Laurentide ice sheet calving events[J].Polar Research,2008,27(2):114-127.
    [47]Meyers P A.Preservation of elemental and isotopic source identification of sedimentary organic matter[J].Chemical Geology,1994,114(3/4):289-302.
    [48]Chengjun Z,Wanyi Z,Rong F.Early diagenesis impacting C/N and organic isotopic compositions in the lacustrince sediments[J].Journal of Earth Environment,2012,3(4):1005-1012.
    [49]Astakhov A,Bosin A,Kolesnik A,et al.Sediment geochemistry and diatom distribution in the Chukchi Sea:Application for bioproductivity and paleoceanography[J].Oceanography,2015,28(3):190-201.
    [50]Ren J,Gersonde R,Esper O,et al.Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2014,402(4):81-103.
    [51]Lambeck K,Rouby H,Purcell A,et al.Sea level and global ice volumes from the Last Glacial Maximum to the Holocene[J].Proceedings of the National Academy of Sciences of the United States of America,2014,111(43):15296-15303.
    [52]Gebhardt H,Sarnthein M,Grootes P M,et al.Paleonutrient and productivity records from the subarctic North Pacific for Pleistocene glacial terminations I to V[J].Paleoceanography,2008,23(4):430-434.
    [53]黄元辉,石学法,葛淑兰,等.白令海深海异常沉积特征及成因分析[J].极地研究,2014,26(1):39-45.Huang Yuanhui,Shi Xuefa,Ge Shulan,et al.Characteristics of abnormal deep-sea sediments in the Bering Sea and their possible causes[J].Chinese Journal of Polar Research,2014,26(1):39-45.
    [54]Sancetta C,Heusser L,Labeyrie L,et al.Holocene paleoenvironment of the Bering Sea:Evidence from diatoms,pollen,oxygen isotopes and clay minerals[J].Marine Geology,1984,62(1/2):55-68.
    [55]Smirnova M A,Kazarina G K,Matul A G,et al.Diatom evidence for paleoclimate changes in the northwestern Pacific during the last 20000years[J].Oceanology,2015,55(3):383-389.
    [56]Brunelle B G,Sigman D M,Jaccard S L,et al.Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum[J].Quaternary Science Reviews,2010,29(19/20):2579-2590.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700