用户名: 密码: 验证码:
铝锂合金化铣废液合成γ-AlOOH及表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Synthesis and characterization of AlOOH from Al-Li alloy chemical milling waste solution
  • 作者:蔡炜 ; 魏砾宏 ; 梁法光 ; 李润东 ; 李彦龙
  • 英文作者:CAI Wei;WEI Lihong;LIANG Faguang;LI Rundong;LI Yanlong;College of Energy and Environment, Shenyang Aerospace University;Xi'an Thermal Power Research Institute Co., Ltd.;
  • 关键词:铝锂合金化铣废液 ; 水合氧化铝 ; 纳米粒子 ; 亚甲基蓝 ; 吸附 ; 模型
  • 英文关键词:aluminum-lithium alloy chemical milling waste water;;aluminum oxyhydroxide;;nanoparticles;;methylene blue;;adsorption;;model
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:沈阳航空航天大学能源与环境学院;西安热工研究院有限公司;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:航空科学基金项目(2016ZE54026)
  • 语种:中文;
  • 页:HGJZ201904028
  • 页数:7
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:250-256
摘要
铝锂合金化学铣切的化铣废液(CMW)会对环境造成严重影响。为有效解决废液处理问题,本文首次利用铝锂合金化铣废液合成出对染料具有优良吸附性能的纳米片状γ-AlOOH。CMW中的NaAlO_2与H_2O_2在室温条件下反应5min即可合成出比表面积高达278m2/g的纳米片状γ-AlOOH。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、傅里叶变换红外光谱(FTIR)和N_2吸附-脱附等表征手段,系统研究了H_2O_2和Al_2O_3摩尔比[(5∶1)~(15∶1)]对合成的γ-AlOOH结构、形貌及结晶度的影响。结果表明,随摩尔比增加,γ-AlOOH的结晶度、晶体粒度和化学基团含量提高,比表面积由137m2/g增加至278m2/g。通过γ-AlOOH对亚甲基蓝(MB)的吸附性能评价了γ-AlOOH的实用性。γ-AlOOH纳米片对MB具有良好的吸附性能,吸附等温线符合Langmuir模型,最大吸附量达173.30mg/g。因此以铝锂合金化铣废液为原料合成的γ-AlOOH具有较高的应用价值,可用作去除废水中染料的高效吸附剂。
        The waste water from chemical milling of aluminum-lithium alloy(CMW) has caused severe environmental problem. The CMW is for the first time treated to prepared nano-flaky γ-AlOOH with excellent adsorption performance for dye. The NaAlO_2 in the CMW was treated at room temperature for5 min in the presence of H_2 O_2,leading to nano-flaky γ-AlOOH with a specific surface area of 278 m2/g.The effects of H_2 O_2/Al_2 O_3 molar ratio [(5∶1)—(15∶1)] on the structure,morphology and crystallinity of the synthesized γ-AlOOH were systematically investigated by X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared analysis(FTIR) and N_2 adsorption-desorption. The analysis shows that the crystallinity,crystal size and the chemical group content of the γ-AlOOH increase with the H_2 O_2/Al_2 O_3 molar ratio,and the specific surface area has risen from 137 m2/g to 278 m2/g. The usability of the γ-AlOOH is evaluated by adsorption of methylene blue(MB). The nano-flaky γ-AlOOH had a good adsorption performance for MB, and the adsorption isotherm fits well with the Langmuir model and maximum adsorption capacity is 173.30 mg/g. Therefore, the γ-AlOOH synthesized from CMW has a high application value as a high-efficient adsorbent for dye removal from waste water.
引文
[1]易慧芝,邓飞跃,张忠亭. 2197铝锂合金化学铣切工艺研究[J].表面技术, 2010, 39(4):73-76.YI H Z, DENG F Y, ZHANG Z T. Study on the chemical milling process of 2197 Al-Li alloy[J]. Surface Technology, 2010, 39(4):73-76.
    [2] ROBERT C, MISSION V, CALIF. Method and apparatus for regenerating an etch solution:US5980771[P]. 1999-11-09.
    [3] BARAKAT M A, El-SHEIKH S M, FARGHLY F E. Removing Al and regenerating caustic soda from the spent washing liquor of Al etching[J]. JOM, 2005, 57(8):34-38.
    [4]赵东璞,张妍,李琢,等.晶种法高效合成低硅铝比LSX型分子筛[J].无机化学学报, 2016, 32(11):1995-2002.ZHAO D P, ZHANG Y, LI Z, et al. High efficient seeding synthesis of LSX molecular sieve with low Si-Al ratio[J]. Chinese Journal of Inorganic Chemistry, 2016, 32(11):1995-2002.
    [5] LIU G H, ZHENG L, QI T G, et al. Continuous changes in electrical conductivity of sodium aluminate solution in seeded precipitation[J].Transactions of Nonferrous Metals Society of China, 2015, 25(12):4160-4166.
    [6]刘焦萍,李壮,张建平,等.超细活性氢氧化铝晶种制备及工业应用[J].轻金属, 2016(8):22-26.LIU J P, LI Z, ZHANG J P, et al. Industrial application and preparation of ultrafine active aluminum hydroxide seed[J]. Light Metals, 2016(8):22-26.
    [7]王迎,俞小花,冯攀,等.晶种对高纯铝酸钠溶液碳分产物量化调控的研究[J].轻金属, 2017(7):14-19.WANG Y, YU X H, FENG P, et al. Study on quantitative regulation of carbonation product of high-purity sodium aluminate solution by seed[J]. Light Metals, 2017(7):14-19.
    [8]黄静,夏举佩,罗中秋.碳酸钠沉淀法制备氢氧化铝及其形成机理探讨[J].化工进展, 2017, 36(3):1120-1125.HUANG J, XIA J P, LUO Z Q. Preparation and growth mechanism of aluminium hydroxide by precipitation method with sodium carbonate[J]. Chemical Industry and Engineering Progress, 2017, 36(3):1120-1125.
    [9] ZHANG H, LI P, CUI W, et al. Synthesis of nanostructuredγ-AlOOH and its accelerating behavior on the thermal decomposition of AP[J].RSC Advances, 2016, 6(32):27235-27241.
    [10] HOU H, ZHU Y, TANG G, et al. Lamellarγ-AlOOH architectures:synthesis and application for the removal of HCN[J]. Materials Characterization, 2012, 68:33-41.
    [11] SUN B, JI Z, LIAO Y, et al. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles[J]. ACS Nano, 2013, 7(12):10834-10849.
    [12] FAN B, CHEN S, YAO Q, et al. Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation[J].Materials, 2017, 10(3):311.
    [13] ZHOU X, ZHANG J, MA Y, et al. The solvothermal synthesis ofγ-AlOOH nanoflakes and their compression behaviors under high pressures[J]. RSC Advances, 2017, 7(9):4904-4911.
    [14]汪颖,朱世根,董威威.水热法制备纳米级片状氧化铝[J].材料科学与工程学报, 2015, 33(3):401-404.WANG Y, ZHU S G, DONG W W. Synthesis of nano-alumina platelets by hydrothermal method[J]. Journal of Materials Science and Engineering, 2015, 33(3):401-404.
    [15] LI Y H, PENG C, ZHAO W, et al. Morphology evolution in hydrothermal synthesis of mesoporous alumina[J]. Journal of Inorganic Materials, 2014, 29(10):1115-1120.
    [16] LIJIMA S, YUMURA T, LIU Z. One-dimensional nanowires of pseudoboehmite(aluminum oxyhydroxideγ-AlOOH)[J]. Proceedings of the National Academy of Sciences, 2016, 113(42):11759-11764.
    [17] LI Z F, DU Y, ZHANG S Y, et al. Synthesis and characterization of hierarchicalγ-AlOOH andγ-Al2O3microspheres with high adsorption performance for organic dye[J]. RSC Advances, 2016, 6(92):89699-89707.
    [18]石涛,周箭,申乾宏.水热辅助溶胶-凝胶法制备纳米晶γ-Al2O3及表征[J].无机化学学报, 2009, 25(5):915-919.SHI T, ZHOU J, SHEN Q H. Preparation and characterization ofγ-Al2O3nanocrystals by hydrothermal assisted sol-gel method[J].Chinese Journal of Inorganic Chemistry, 2009, 25(5):915-919.
    [19] QIN W, PRNG C, LV M, et al. Preparation and properties of highpurity porous alumina support at low sintering temperature[J].Ceramics International, 2014, 40(8):13741-13746.
    [20] TANG X, YU Y. Electrospinning preparation and characterization of alumina nanofibers with high aspect ratio[J]. Ceramics International,2015, 41(8):9232-9238.
    [21] WANG T, LIU S. Green synthesis and photoluminescence property of AlOOH nanoflakes[J]. Powder Technology, 2016, 294:280-283.
    [22] XU Z, YU J, LOW J, et al. Microemulsion-assisted synthesis of mesoporous aluminum oxyhydroxide nanoflakes for efficient removal of gaseous formaldehyde[J]. ACS Applied Materials&Interfaces, 2014, 6(3):2111-2117.
    [23]辛勤,罗孟飞.现代催化研究方法[M].北京:科学出版社, 2009:190-209.XIN Q, LUO M F. Modern catalysis research methods[M]. Beijing:Science Press, 2009:190-209.
    [24]李洁.过饱和铝酸钠溶液结构及分解机理的研究[D].长沙:中南大学, 2001.LI J. Study on the structural characteristics and decomposition mechanism of supersaturated sodium aluminate solution[D]. Changsha:Central South University, 2001.
    [25]郭小蕊,权婷婷,谢天翼,等.分级结构γ-AlOOH的无模板水热制备及其吸附性能[J].硅酸盐通报, 2017, 36(4):1175-1179.GUO X R, QUAN T T, XIE T Y, et al. Synthesis of hierarchicalγ-AlOOH via template-free hydrothermal method and its adsorption performance[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(4):1175-1179.
    [26]蔡卫权,李会泉,张懿. H2O2沉淀铝酸钠溶液法制备大孔容纳米γ-Al2O3纤维粒子[J].化工学报, 2004, 55(12):1976-1981.CAl W Q, LI H Q, ZHANG Y. Preparation of nanofibrousγ-Al2O3particles with large pore volume from H2O2and sodium aluminate solutions[J]. Journal of Chemical Industry and Engineering(China),2004, 55(12):1976-1981.
    [27] OZER D, DURSUN G, OZER A. Methylene blue adsorption from aqueous solution by dehydrated peanut hull[J]. Journal of Hazardous Materials, 2007, 144(1/2):171-179.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700