用户名: 密码: 验证码:
基于硬脂酸复合相变材料的被动热沉性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Performance of a passive heat sink using stearic acid based composite as phase change material
  • 作者:赵亮 ; 邢玉明 ; 刘鑫 ; 罗叶刚 ; 芮州峰
  • 英文作者:ZHAO Liang;XING Yuming;LIU Xin;LUO Yegang;RUI Zhoufeng;School of Aeronautic Science and Engineering,Beihang University;
  • 关键词:被动热沉 ; 硬脂酸 ; 相变材料 ; 泡沫铜 ; 温控 ; 双温度能量方程
  • 英文关键词:passive heat sink;;stearic acid;;phase change material;;copper foam;;thermal management;;two temperature energy equation
  • 中文刊名:BJHK
  • 英文刊名:Journal of Beijing University of Aeronautics and Astronautics
  • 机构:北京航空航天大学航空科学与工程学院;
  • 出版日期:2018-12-21 16:07
  • 出版单位:北京航空航天大学学报
  • 年:2019
  • 期:v.45;No.315
  • 基金:航空科学基金(20172851018)~~
  • 语种:中文;
  • 页:BJHK201905015
  • 页数:10
  • CN:05
  • ISSN:11-2625/V
  • 分类号:127-136
摘要
固液相变储能材料的被动热沉广泛应用于航空航天及军事装备领域。针对高热流密度电子芯片的被动温控问题,对比实验验证了单温度和双温度2种数值模拟方法对基于泡沫铜/硬脂酸复合相变材料被动热沉控温过程模拟的准确性。结合基于Maxwell-Garnett模型的EMT建立了石墨烯纳米片/硬脂酸复合相变材料物性,采用更为精确的双温度数值模拟方法分析了不同导热强化方式的控温效果,并研究了环境温度对热沉控温效果的影响。结果表明:高热流密度下的相变温控过程采用双温度数值模拟更为精确;当导热增强体的体积组分相同时,提高泡沫金属的孔密度对相变温控效果提升有限,而同时采用泡沫金属与石墨烯纳米片能更有效改善相变控温效果;环境温度的剧烈变化对温控时间和控温温度均能产生影响。
        The phase change material based passive heat sink is widely applied in the fields of aerospace and military equipment. To address the thermal management of electronic chip with high heat flux,the single temperature energy equation and the two temperature energy equation were applied to simulate the thermal management performance of the copper foam/stearic acid based heat sink,and their accuracy were validated by the lab-scale experiment. By combining with the thermal properties of grapheme nanoplatelets/stearic acid composite phase change material established by EMT based on Maxwell-Garnett model,the influence of different composition of thermal conductivity enhancement on the thermal performance of the heat sink was investigated. And the effect of the ambient temperature was studied. The results show that the two temperature energy equations can simulate more accurately when the heat flux of the chip is higher. When the volume fraction of the thermal conductivity enhancer is fixed,increasing pore density of copper foam has few improvement on the thermal management performance,while copper foam with Gn P can effectively improve the thermal management performance of the heat sink. The serious change of ambient temperature can play an important role in the managed temperature and temperature control time.
引文
[1]AVCI M,YAZICI M Y.An experimental study on effect of inclination angle on the performance of a PCM-based flat-type heat sink[J].Applied Thermal Engineering,2018,131:806-814.
    [2]WANG Y J,LUO Q H,CHEN X M.Advanced electronic cooling technologies[C]∥2009 Asia Pacific Conference on Postgraduate Research in Microelectronics&Electronics.Piscataway,NJ:IEEE Press,2010:149-152.
    [3]LING Z Y,ZHANG Z G,SHI G Q,et al.Review on thermal management systems using phase change materials for electronic components,Li-ion batteries and photovoltaic modules[J].Renewable&Sustainable Energy Reviews,2014,31(2):427-438.
    [4]MOHAMED S A,AL-SULAIMAN F A,IBRAHIM N I,et al.Areview on current status and challenges of inorganic phase change materials for thermal energy storage systems[J].Renewable&Sustainable Energy Reviews,2017,70:1072-1089.
    [5]IBRAHIM N I,AL-SULAIMAN F A,RAHMAN S,et al.Heat transfer enhancement of phase change materials for thermal energy storage applications:A critical review[J].Renewable&Sustainable Energy Reviews,2017,74:26-50.
    [6]ZALBA B,JOSE M A MARIN,CABEZA L F,et al.Review on thermal energy storage with phase change:Materials,heat transfer analysis and applications[J].Applied Thermal Engineering,2003,23(3):251-283.
    [7]BABY R,BALAJI C.Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling[J].International Journal of Heat&Mass Transfer,2011,55(5):1642-1649.
    [8]ARSHAD A,ALI H M,YAN W M,et al.An experimental study of enhanced heat sinks for thermal management using n-eicosane as phase change material[J].Applied Thermal Engineering,2018,132:52-66.
    [9]LV Y F,SITU W F,YANG X Q,et al.A novel nanosilica-enhanced phase change material with anti-leakage and anti-volume-changes properties for battery thermal management[J].Energy Conversion&Management,2018,163:250-259.
    [10]迟蓬涛,高红霞,余建祖,等.翅片-泡沫铜复合结构的导热增强作用[J].航空动力学报,2012,27(4):854-860.CHI P T,GAO H X,YU J Z,et al.Heat transfer enhancement of fin-copper foam composite structure[J].Journal of Aerospace Power,2012,27(4):854-860(in Chinese).
    [11]施尚,余建祖,陈梦东,等.基于泡沫铜/石蜡的锂电池热管理系统性能[J].化工学报,2017,68(7):2678-2683.SHI S,YU J Z,CHEN M D,et al.Battery thermal management system using phase change materials and foam copper[J].Journal of Chemical Industry and Engineering,2017,68(7):2678-2683(in Chinese).
    [12]LI T,WU D L,HE F,et al.Experimental investigation on copper foam/hydrated salt composite phase change material for thermal energy storage[J].International Journal of Heat and Mass Transfer,2017,115:148-157.
    [13]ALSHAER W G,NADA S A,RADY M A,et al.Numerical investigations of using carbon foam/PCM/Nano carbon tubes composites in thermal management of electronic equipment[J].Energy Conversion&Management,2015,89:873-884.
    [14]WU W X,ZHANG G Q,KE X F,et al.Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management[J].Energy Conversion&Management,2015,101:278-284.
    [15]LI T,LEE J H,WANG R,et al.Heat transfer characteristics of phase change nanocomposite materials for thermal energy storage application[J].International Journal of Heat and Mass Transfer,2014,75:1-11.
    [16]LI T,LEE J H,WANG R,et al.Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes[J].Energy,2013,55:752-761.
    [17]AGYENIM F,HEWITT N,EAMES P,et al.A review of materials,heat transfer and phase change problem formulation for latent heat thermal energy storage systems(LHTESS)[J].Renewable&Sustainable Energy Reviews,2010,14(2):615-628.
    [18]SHARMA A,TYAGI V V,CHEN C R,et al.Review on thermal energy storage with phase change materials and applications[J].Renewable&Sustainable Energy Reviews,2009,13(2):318-345.
    [19]CUNHA J P D,EAMES P.Thermal energy storage for low and medium temperature applications using phase change materialsA review[J].Applied Energy,2016,177:227-238.
    [20]ZHENG H P,WANG C H,LIU Q M,et al.Thermal performance of copper foam/paraffin composite phase change material[J].Energy Conversion&Management,2018,157:372-381.
    [21]TIAN Y,ZHAO C Y.A numerical investigation of heat transfer in phase change materials(PCMs)embedded in porous metals[J].Energy,2011,36(9):5539-5546.
    [22]FENG S S,SHI M,LI Y F,et al.Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam[J].International Journal of Heat&Mass Transfer,2015,90:838-847.
    [23]HU X,PATNAIK S S.Modeling phase change material in micro-foam under constant temperature condition[J].International Journal of Heat&Mass Transfer,2014,68(1):677-682.
    [24]ZHANG P,MENG Z N,ZHU H,et al.Melting heat transfer characteristics of a composite phase change material fabricated by paraffin and metal foam[J].Applied Energy,2015,182:1971-1983
    [25]FANG X,FAN L W,DING Q,et al.Increased thermal conductivity of eicosane-based composite phase change materials in the presence of graphene nanoplatelets[J].Energy&Fuels,2013,27(7):4041-4047.
    [26]KHODADADI J M,FAN L,BABAEI H.Thermal conductivity enhancement of nanostructure-based colloidal suspensions utilized as phase change materials for thermal energy storage:A review[J].Renewable&Sustainable Energy Reviews,2013,24(10):418-444.
    [27]HARISH S,OREJON D,TAKATA Y,et al.Thermal conductivity enhancement of lauric acid phase change nanocomposite with graphene nanoplatelets[J].Applied Thermal Engineering,2015,80:205-211.
    [28]DAS N,KOHNO M,TAKATA Y,et al.Enhanced melting behavior of carbon based phase change nanocomposites in horizontally oriented latent heat thermal energy storage system[J].Applied Thermal Engineering,2017,125:880-890.
    [29]KRIEGER I M,DOUGHERTY T J.A mechanism for non-newtonian flow in suspensions of rigid spheres[J].Journal of Rheology,1959,3(1):137-152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700