用户名: 密码: 验证码:
船载压力油箱设计及恒压特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and constant pressure characteristics of a ship-borne pressure tank
  • 作者:赵丁选 ; 贾拓 ; 崔玉鑫
  • 英文作者:ZHAO Dingxuan;JIA Tuo;CUI Yuxin;School of Mechanical and Aerospace Engineering,Jilin University;Heibei Key Laboratory of Special Delivery Equipment,Yanshan University;
  • 关键词:船载压力油箱 ; 恒压 ; PID控制 ; 模糊PID控制
  • 英文关键词:ship pressure tank;;constant pressure;;PID control;;fuzzy PID control
  • 中文刊名:QHXB
  • 英文刊名:Journal of Tsinghua University(Science and Technology)
  • 机构:吉林大学机械与航空航天工程学院;燕山大学河北省特种运载装备重点实验室;
  • 出版日期:2019-01-24 15:13
  • 出版单位:清华大学学报(自然科学版)
  • 年:2019
  • 期:v.59
  • 基金:国家重点研发计划项目(2016YFC0802900)
  • 语种:中文;
  • 页:QHXB201904009
  • 页数:8
  • CN:04
  • ISSN:11-2223/N
  • 分类号:61-68
摘要
针对在高海情、海浪升沉较大的工况,船载压力油箱稳压效果差的问题,提出一种具有可根据工况自调气腔压力的新型船载压力油箱设计方案。建立该油箱的数学模型,进而建立AMESim和Matlab联合仿真模型,对压力油箱进行恒压动静态特性仿真分析,最后通过传统PID和模糊PID对压力偏差进行优化控制,仿真结果表明,在传统PID和模糊PID控制下,压力偏差较无控制作用时分别降低了77%和92%。结果表明,模糊PID恒压优化控制效果更好,为压力油箱恒压稳定性后续深入研究奠定基础。
        Ship load pressure tanks can become unstable in high seas as the waves lift and drop the ship.This study describes a ship pressure tank with automatic pressure control.A mathematical model of the tank is solved using a simulation model in AMESim and Matlab to predict the static and dynamic characteristics of the pressure tank.The pressure changes are then minimized using traditional PID and fuzzy PID methods.The results show that the traditional PID reduces the pressure variations by 77% while the fuzzy PID control reduces the pressure variations by 92% compared to those without control.Thus,the optimized fuzzy PID constant pressure control algorithm provides better control of the pressure stability in pressure tanks.
引文
[1]毛福合,罗小梅,一种供油系统压力油箱的AMESim自定义建模与仿真[J].中国科技信息,2009(1):98-100.MAO F H,LUO X M.AMESim custom modeling and simulation of fuel tank for fuel supply system[J].China Science and Technology Information,2009(1):98-100.(in Chinese)
    [2]胡宁,陈真.基于AMESim的AT液压控制系统可靠性分析[J].机床与液压,2011,39(3):145-147.HU N,CHEN Z.Reliability analysis for hydraulic controlled system of AT based on AMESim[J].Machine Tool&Hydraulics,2011,39(3):145-147.(in Chinese)
    [3]边心文,赵翼翔,陈新度.基于AMESim优化功能的参数识别法建模研究[J].机床与液压.2011,39(21):121-124.BIAN X W,ZHAO Y X,CHEN X D.Study on modeling with parameter identification method based on optimization function of AMESim[J].Machine Tool&Hydraulics,2011,39(21):121-124.(in Chinese)
    [4]李建藩.气压传动系统动力学[M].广州:华南理工大学出版社,1991.LI J P.Pneumatic transmission system dynamics[M].Guangzhou:South China University of Technology Press,1991.(in Chinese)
    [5]全振兴.囊式蓄能器在液压系统中应用[J].山东煤炭科技,2013(1):61-62.QUAN Z X.The application of the capsule accumulator in the hydraulic system[J].Shandong Coal Science and Technology,2013(1):61-62.(in Chinese)
    [6]王林.皮囊式蓄能器的选用体会[J].液压气动与密封,2009(6):49-50.WANG L.Selection experience of accumulator[J].Hydraulics Pneumatics&Seals,2009(6):49-50.(in Chinese)
    [7]杨燕芳.不同工况下皮囊式蓄能器工作参数的选择与计算[D].秦皇岛:燕山大学,2011.YANG Y F.Working parameters selection and caculation of bladder-type accumulator under the different conditions[D].Qinhuangdao:Yanshan University,2011.(in Chinese)
    [8]黄中华,金波,刘少军,等.皮囊式蓄能器快速增压过程[J].中南大学学报(自然科学版),2006,37(2):306-310.HUANG Z H,JIN B,LIU S J,et al.Quick plenum process of bladder accumulator[J].Journal of Central South University(Natural Science Edition),2006,37(2):306-310.(in Chinese)
    [9]赵克定,李尚义,罗晓鸣,等.并联和串联囊式蓄能器的理论分析和数字仿真[J].哈尔滨工业大学学报,1991(2):66-74.ZHAO K D,LI S Y,LUO X M,et al.Theoretical analysis and numerical simulation of parallel and series capsule accumulators[J].Journal of Harbin Institute of Technology,1991(2):66-74.(in Chinese)
    [10]姚荣康,朱昌明,詹永麒,等.带皮囊式蓄能器的油压缓冲器仿真与试验[J].系统仿真学报,2005,17(11):2741-2744.YAO R K,ZHU C M,ZHAN Y L,et al.Oil buffer simulation and testing with air accumulator[J].Journal of System Simulation,2005,17(11):2741-2744.(in Chinese)
    [11]吕庆军,杨庆俊,朱东.基于AMESet的压力油箱供油系统建模与仿真研究[J].机床与液压,2013,41(23):128-131.LQ J,YANG Q J,ZHU D.Research on modeling and simulation of hydraulic oil supply system with pressurized tank based on AMESet[J].Machine Tool&Hydraulics,2013,41(23):128-131.(in Chinese)
    [12]郑贺锋.多泵多体制液压原理性试验平台研究[D]杭州:浙江大学,2012.ZHENG H F.Investigation into the aircraft hydraulic platform with multi-pumps and systems[D].Hangzhou:Zhejiang University,2012.(in Chinese)
    [13]杨华勇,丁斐,欧阳小平,陆清.大型客机液压能源系统[J].中国机械工程,2009,20(18):2152-2159.YANG H Y,DING F,OUYANG X P,LU Q.Hydraulic power systems for trunk line aircrafts[J].China Mechanical Engineering,2009,20(18):2152-2159.(in Chinese)
    [14]余佑官,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005,(3):28-30.YU Y G,GONG G F,HU G L.Simulation technique of AMESim and its application in hydraulic system[J].Hydraulics Pneumatics&Seals,2005,(3):28-30.(in Chinese)
    [15]秦家升,游善兰.AMESim软件的特征及其应用[J]工程机械,2004,(12):6-8.QIN J S,YOU S L.The features and application of AMESim software[J].Construction Machinery and Equipment,2004,(12):6-8.(in Chinese)
    [16]王倩,赵丁选,魏海龙,赵颖.复杂海况下舰载机着舰的动力学研究[J].东北大学学报(自然科学版),2017,38(11):1595-1600.WANG Q,ZHAO D X,WEI H L,ZHAO Y.Study of the landing dynamics of carrier based helicopter under complex sea conditions[J].Journal of Northeastern University(Natural Science),2017,38(11):1595-1600.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700