用户名: 密码: 验证码:
黑潮延伸体区域海表温度锋的时空变化特征分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:THE VARIATION OF THE KUROSHIO EXTENSION SST FRONT
  • 作者:刘明洋 ; 谭言科 ; 李崇银 ; 余沛龙 ; 殷明
  • 英文作者:LIU Ming-yang;TAN Yan-ke;LI Chong-yin;YU Pei-long;YIN Ming;No.91939 Troop of PLA;Institute of Meteorology and Oceanography, National University of Defense Technology;State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics, Chinese Academy of Sciences;No.61936 Troop of PLA;
  • 关键词:黑潮延伸体 ; 海表温度锋 ; 时空变化 ; PDO ; NPGO
  • 英文关键词:Kuroshio Extension;;SST front;;temporal and spatial variation;;PDO;;NPGO
  • 中文刊名:RDQX
  • 英文刊名:Journal of Tropical Meteorology
  • 机构:中国人民解放军91939部队;国防科技大学气象海洋学院;中国科学院大气物理研究所LASG国家重点实验室;中国人民解放军61936部队;
  • 出版日期:2017-12-15
  • 出版单位:热带气象学报
  • 年:2017
  • 期:v.33
  • 基金:国家“973”项目(2013CB956203);; 国家自然科学基金项目(41490642;41475070)共同资助
  • 语种:中文;
  • 页:RDQX201706011
  • 页数:9
  • CN:06
  • ISSN:44-1326/P
  • 分类号:113-121
摘要
利用NOAA最优插值逐日海表温度资料和AVISO中心的海表高度异常资料,分析了黑潮延伸体区域的海表温度锋的时空变化特征以及导致其年代际变化可能的原因。结果表明,气候平均态的黑潮延伸体区域海表温度锋位于黑潮延伸体区域北部边缘,在143°E和150°E附近存在两个弯曲,SST水平梯度最大值出现在142°E附近,强度超过4.5℃/(100 km),其后强度自西向东逐渐递减,在149°E附近又出现一个较弱的大值中心,在141~153°E范围内,海表温度锋位置的平均值为36.25°N,强度的平均值为3.22℃/(100 km)。黑潮延伸体区域的海表温度锋南北位置的季节变化很弱,而其强度的季节变化非常显著。相较于较弱的季节变化,海表温度锋位置的年际和年代际的低频变化则要显著得多,其南北变化跨度超过2°。海表温度锋强度的年际和年代际的低频变化也较强,超过4.5℃/(100 km)。黑潮延伸体区域的海表温度锋的变化与太平洋年代际振荡(PDO)以及北太平洋涡旋振荡(NPGO)存在显著的相关关系,NPGO和PDO在中东太平洋区域会强迫产生海表高度异常,随后向西传播,在约3年后到达黑潮延伸体区域,使该区域流场发生变化产生海洋热平流异常,最终导致海表温度锋强度发生变化。
        By using NOAA daily Optimum Interpolation Sea Surface Temperature dataand AVISO sea surface heightanomaly data, this paper analyzes the variation of Kuroshio Extension SST front and the cause for its low-frequency variation. Result shows that the mean Kuroshio Extension SST front is adjacent to the Kuroshio Extension, with two meanders located at 143 °E and 150 °E, respectively. The maximum of the SST gradient is located near 142 °E, exceeding4.5 ℃/(100 km), and the strength of the SST front gradually decreases from west to east and has a weak maximum value center around 149 °E. Averaged over 141~153 °E,the mean position of the Kuroshio Extension SST front is 36.25 °N, and the mean strength is 3.22℃/(100 km).The seasonal variation of the SST front position is weak, but its strength has significantly strong seasonal variation. Compared with weak seasonal variation, the interannual to interdecadal variation of SST front position is relatively strong, which can exceed 2 °. The strength of the Kuroshio Extension SST front also has significant interannual to interdecadal variation, which can exceed 4.5℃/(100 km). The variation of Kuroshio Extension SST front is closely linked with the Pacific Decadal Oscillation(PDO) and North Pacific Gyre Oscillation(NPGO), the sea surface height anomaly forced by the NPGO and PDO will propagate westward, and about 3 years later reaches the Kuroshio Extension and influences the variation of the sea surface height, and finally results in the variation of SST front strength.
引文
[1]STOMMEL H M,YOSHIDA K.Kuroshio:its physical aspects[M].University of Tokyo Press,1972:129-164.
    [2]SU J,GUAN B,JIANG J.The Kuroshio,part 1,physical features[J].Oceanogr Mar Biol Annu Rev,1990,28(1):11-71.
    [3]BRYDEN H L,ROEMMICH D H,CHURCH J A.Ocean heat transport across 24°N in the Pacific[J].Deep Sea Res,1991,38(3):297-324.
    [4]QIU B.Kuroshio extension variability and forcing of the pacific decadal oscillations:Responses and potential feedback[J].J Phys Oceanogr,2003,33(12):2 465-3 482.
    [5]QIU B.Interannualvariability of the Kuroshio extension system and its impact on the wintertime SST field[J].J Phys Oceanogr,2000,30(6):1 486-1 502.
    [6]QIU B,CHEN S.Variability of the Kuroshio Extension jet,recirculation gyre and mesoscale eddies on decadal timescales[J].J Phys Oceanogr,2005,35(11):2 090-2 103.
    [7]QIU B,CHEN S.Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system[J].Deep Sea Research Part II:Topical Studies in Oceanography,2010,57(13-14):1 098-1 110.
    [8]MANTUA N J,HARE S R,ZHANG Y,et al.A Pacific interdecal climate oscillation with impacts on salmon production[J].Bull Amer Meteor Soc,1997,78(6):1 069-1 079.
    [9]LORENZO E D,SCHNEIDER N,COBB K M,et al.North Pacific gyre oscillation links ocean climate and ecosystem change[J].Geophys Res Lett,2008,35(8):1-6.
    [10]YU P L,ZHANG L F,ZHANG Y C,et al.Interdecadal change of winter SST variability in the Kuroshio Extension region and its linkage with Aleutian atmospheric low pressure system[J].Acta Oceanologica Sinica,2016,35(5):24-37.
    [11]MIZUNO K,WHITEW B.Annual and interannual variability in the Kuroshio Current system[J].J Phys Oceanogr,1983,13(10):1 847-1 867.
    [12]CHEN S.The Kuroshio extension front from satellite sea surface temperature measurements[J].J Oceanogr,2008,64(6):891-897.
    [13]WANG Y X,YANG X Y,HU J Y.Position variability of the Kuroshio Extension sea surface temperature front[J].Acta Oceanolog Sin,2016,35(7):30-35.
    [14]SMALL R J,DESZOEKE S P,XIE S P,et al.Air-sea interaction over ocean fronts and eddies[J].Dyn Atmos Oceans,2008,45(3-4):274-319.
    [15]SWEET W,FETT R,KERLING J,et al.Air-sea interaction effects in the lower troposphere across the north wall ofthe Gulf Stream[J].Mon Wea Rev,1981,109(5):1 042-1 052.
    [16]BUSINGER J A,SHAWW J.The response of the marine boundary layer to mesoscale variations in sea-surface temperature[J].Dyn Atmos Oceans,1984,8(3):267-281.
    [17]HAYES S P,MCPHADEN M J,WALLACE J M.The influence of sea surface temperature on surface wind in the eastern equatorial Pacific:weekly to monthly variability[J].J Clim,1989,2(12):1 500-1 506.
    [18]CHELTON B D,SCHLAX M G,FREILICH M H,er al.Satellite measurements reveal persistent small-scale features in ocean winds[J].Sci,2004,303(5 660):978-983.
    [19]王钦,李双林,付建建.两类ENSO背景下黑潮及其延伸区海温异常对东北夏季降水的影响:个例对比[J].热带气象学报,2016,32(1):73-84.
    [20]王晓丹,钟中,谭言科,等.冬季黑潮延伸体异常增暖对东亚夏季风影响的数值试验[J].热带气象学报,2011,27(4):569-576.
    [21]XU H M,XU M M,XIES P,et al.Deep atmospheric response to the spring Kuroshio over the East China Sea[J].J Clim,2011,24(18):4 959-4 972.
    [22]MA J,XU H,DONG C,et al.Atmospheric responses to oceanic eddies in the Kuroshio Extension region[J].J Geophys Res Atmos,2015,120(13):6 313-6 330.
    [23]MA J,XU H,DONG C.Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio Extension[J].Tellus A:Dyn Meteorol Oceanogr,2016,68(1):31 563.
    [24]NAKAMURA M,MIYAMA T.Impacts of the Oyashiotemperature front on the regional climate[J].J Clim,2014,27(20):7 861-7 873.
    [25]马静,徐海明.春季黑潮延伸体海洋锋区经向位移与东亚大气环流的关系.气象科学,2012,32(4):375-384.
    [26]刘明洋,李崇银,陈雄,等.冬季黑潮延伸体区域海表温度锋对北太平洋风暴轴的影响[J].气象学报,2017,75(1):98-110.
    [27]REYNOLDS R W,SMITH T M,LIU C,et al.Daily high-resolu-tion-blended analyses for sea surface temperature[J].J Clim,2007,20(22):5 473-5 496,doi:10.1175/2007JCLI1824.1.
    [28]DUCET N,TRAON P Y L,REVERDIN G.Global high resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and-2[J].J Geophys Res,2000,105(C8):19 477-19 498,doi:10.1029/2000JC900063.
    [29]KWON Y O,ALEXANDER M A,BOND N A,et al.Role of the gulf stream and Kuroshio-Oyashio systems in large-scale atmosphere-ocean interaction:Areview[J].J Clim,2010,23(12):3 249-3 281.
    [30]KELLY K A,SMALL R J,SAMELSON R M,et al.Western boundary currents and frontal air-sea interaction:Gulf stream and Kuroshio extension[J].J Clim,2010,23(21):5 644-5 667.
    [31]MINOBE S,KUWANOYOSHIDA A,KOMORI N,et al.Influence of the Gulf Stream on the troposphere[J].Nature,2008,452(7184):206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700