用户名: 密码: 验证码:
不同碳材料辅助下混合中度嗜热微生物浸出黄铜矿的比较研究(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Comparative study on chalcopyrite bioleaching with assistance of different carbon materials by mixed moderate thermophiles
  • 作者:朱萍 ; 刘学端 ; 陈爱佳 ; 刘宏伟 ; 尹华群 ; 邱冠周 ; 郝晓东 ; 梁伊丽
  • 英文作者:Ping ZHU;Xue-duan LIU;Ai-jia CHEN;Hong-wei LIU;Hua-qun YIN;Guan-zhou QIU;Xiao-dong HAO;Yi-li LIANG;School of Minerals Processing and Bioengineering, Central South University;Key Laboratory of Biometallurgy of Ministry of Education, Central South University;Shandong Provincial Key Laboratory of Soil Conservation and Environmental Protection,College of Resources and Enviroment, Linyi University;
  • 关键词:黄铜矿 ; 浸出 ; 碳材料 ; 混合中度嗜热微生物 ; 微生物群落结构
  • 英文关键词:chalcopyrite;;leaching;;carbon material;;mixed moderate thermophiles;;microbial community structure
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学资源加工与生物工程学院;中南大学生物冶金教育部重点实验室;临沂大学资源环境学院山东省水土保持与环境保育重点实验室;
  • 出版日期:2019-06-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(31570113)supported by the National Natural Science Foundation of China;; Project(2016YFB0101310)supported by the National Key Research and Development Program of China
  • 语种:英文;
  • 页:ZYSY201906017
  • 页数:10
  • CN:06
  • ISSN:43-1239/TG
  • 分类号:183-192
摘要
采用混合中度嗜热微生物研究4种碳材料(人造石墨、炭黑、活性炭和碳纳米管)对黄铜矿浸出的催化作用。结果表明,添加人造石墨和活性炭能使溶液pH值降低,氧化还原电位维持在合适的范围,使浸出液中总铁、三价铁浓度和矿渣表面吸附微生物的数量增加,最终提高黄铜矿中铜的浸出率;而添加炭黑和碳纳米管能抑制浸矿微生物的生长,最终导致浸出效率降低。X射线衍射分析表明,在添加人造石墨和活性炭实验组中,黄钾铁矾和硫膜是钝化层的主要成分,但钝化层的形成不会影响黄铜矿的进一步分解。此外,人造石墨和活性炭的添加使浸出体系中游离微生物和吸附微生物的群落结构发生改变。在黄铜矿浸出末期,硫氧化茵A.caldus S1(丰度为93%~98%)成为优势菌种,而铁氧化菌L.ferriphilum YSK所占比例仅为1%~2%。
        The catalysis of four carbon materials including artificial graphite(AG), carbon black(CB), activated carbon(AC) and carbon nanotube(CN) on chalcopyrite bioleaching by mixed moderate thermophiles was comparatively investigated. In AC and AG added bioleaching groups, low solution pH and suitable redox potential values, high total iron and ferric iron concentrations, and large number of adsorbed bacteria were obtained, resulting in high copper extractions. CB and CN inhibited the growth of bioleaching bacteria and led to the low bioleaching efficiency.X-ray diffraction analysis showed that jarosite and sulfur film were the main components of passivation layer with the addition of AG and AC,but did not hinder the dissolution of chalcopyrite. Microbial community structures of free and attached cells in AC and AG added groups changed dramatically compared with mixed moderate thermophiles. The sulfur-oxidizing bacteria of A. caldus S1 strain dominated the microbial community(93%-98%) at the end of bioleaching.The iron-oxidizing bacteria of L.ferriphilum YSK only accounted for low percentage(1%-2%).
引文
[1]DUTRIZAC J E.The dissolution of chalcopyrite in ferric sulfate and ferric chloride media[J].Metallurgical Transactions B,1981,12:371-378.
    [2]BRIERLEY C L.Biohydrometallurgical prospects[J].Hydrometallurgy,2010,104:324-328.
    [3]MARHUAL N P,PRADHAN N,KAR R N,SUKLA L B,MISHRAB K.Differential bioleaching of copper by mesophilic and moderately thermophilic acidophilic consortium enriched from same copper mine water sample[J].Bioresource Technology,2008,99:8331-8336.
    [4]WU A X,HU K J,WANG H J,ZHANG A Q,YANG Y.Effect of ultraviolet mutagenesis on heterotrophic strain mutation and bioleaching of low grade copper ore[J].Journal of Central South University,2017,24:2245-2252.
    [5]YANG Y,LIU W,CHEN M.XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30°C and48°C[J].Minerals Engineering,2015,70:99-108.
    [6]ZHOU H B,ZENG W M,YANG Z F,XIE Y J,QIU G Z.Bioleaching of chalcopyrite concentrate by a moderately thermophilic culture in a stirred tank reactor[J].Bioresource Technology,2009,99:515-520.
    [7]ZHOU S,GAN M,ZHU J Y,LI Q,JIE S Q,YANG B J,LIU X D.Catalytic effect of light illumination on bioleaching of chalcopyrite[J].Bioresource Technology,2015,182:345-352.
    [8]ZHAO H B,WANG J,GAN X W,ZHENG X H,TAO L,HU M H,LI Y N,QIN W Q,QIU G Z.Effects of pyrite and bornite on bioleaching of two different types of chalcopyrite in the presence of Leptospirillum ferriphilum[J].Bioresource Technology,2015,194:28-35.
    [9]PANDA S,PARHI P K,NAYAK B D,PRADHAN N,MOHAPATRA U B,SUKLA L B.Two step meso-acidophilic bioleaching of chalcopyrite containing ball mill spillage and removal of the surface passivation layer[J].Bioresource Technology,2013,130:332-338.
    [10]HU Y H,QIU G Z,WANG J,WANG D Z.The effect of silverbearing catalysts on bioleaching of chalcopyrite[J].Hydrometallurgy,2002,64:81-88.
    [11]ZHANG R Y,WEI D Z,SHEN Y B,LIU W G,LU T,HAN C.Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans[J].Minerals Engineering,2016,95:74-78.
    [12]DREISINGER D,ABED N.A fundamental study of the reductive leaching of chalcopyrite using metallic iron.Part I:Kinetic analysis[J].Hydrometallurgy,2002,66:37-57.
    [13]MA C L,ZHAO Y,LI J,SONG Y,SHI J L,GUO Q G,LIU L.Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries[J].Carbon,2013,64:553-556.
    [14]UPADHYAYULA V K K,DENG S,MITCHELL M C,SMITH G B.Application of carbon nanotube technology for removal of contaminants in drinking water:A review[J].Science of the Total Environment,2009,408:1-13.
    [15]ZHOU Z Y,HUANG Z Z,CHEN D J,WANG Q,TIAN N,SUN S G.High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation[J].Angewandte Chemie,2010,49:411-414.
    [16]SHIN H C,CHO W I,JANG H.Electrochemical properties of carbon-coated Li FePO4 cathode using graphite,carbon black,and acetylene black[J].Electrochimica Acta,2007,52:1472-1476.
    [17]WAN R Y,MILLER J D,FOLEY J,PONS S.Electrochemical features of the ferric sulfate leaching of CuFeS2/C aggregates[C]//RICHARDSON P E,SRINIVASAN S,WOODS R.Electrochemistry in Mineral and Metal Processing.Pennington:Electrochemical Society,1984:391-416.
    [18]MA Y L,LIU H C,XIA J L,NIE Z Y,ZHU H R,ZHAO Y D,MA CY,ZHENG L,HONG C H,WEN W.Relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleaching by mixed thermophilic Archaea culture at65°C[J].Transactions of Nonferrous Metals Society of China,2017,27:1374-1384.
    [19]MA L Y,WANG X J,FENG X,LIANG Y L,XIAO Y H,HAO X D,YIN H Q,LIU H W,LIU X D.Co-culture microorganisms with different initial proportions reveal the mechanism of chalcopyrite bioleaching coupling with microbial community succession[J].Bioresource Technology,2017,223:121-130.
    [20]NAKAZAWA H,FUJISAWA H,SATO H.Effect of activated carbon on the bioleaching of chalcopyrite concentrate[J].International Journal of Mineral Processing,1998,55:87-94.
    [21]ZHANG W M,GU S F.Catalytic effect of activated carbon on bioleaching of low-grade primary copper sulfide ores[J].Transactions of Nonferrous Metals Society of China,2007,17:1123-1127.
    [22]LIANG C L,XIA J L,ZHAO X J,YANG Y,GONG S Q,NIE Z Y,MA C Y,ZHENG L,ZHAO Y D,QIU G Z.Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis[J].Hydrometallurgy,2010,105:179-185.
    [23]HAO X D,LIU X D,ZHU P,CHEN A J,LIU H W,YIN H Q,QIU GZ,LIANG Y L.Carbon material with high specific surface area improves complex copper ores’bioleaching efficiency by mixed moderate thermophiles[J].Minerals,2018,8:301-315.
    [24]FERNáNDEZREYES J S,GARCíAMEZA J V.Bioelectrochemical system for the biooxidation of a chalcopyrite concentrate by acidophilic bacteria coupled to energy current generation and cathodic copper recovery[J].Biotechnology Letters,2018,40:63-73.
    [25]MEHRABANI J V,SHAFAEI S Z,NOAPARAST M,MOUSAVI SM.Bioleaching of different pyrites and sphalerite in the presence of graphite[J].Geomicrobiology Journal,2017,34:97-108.
    [26]THIRD K A,CORD-RUWISCH R,WATLING H R.Control of the redox potential by oxygen limitation improves bacterial leaching of chalcopyrite[J].Biotechnology and Bioengineering,2002,78:433-441.
    [27]WATLING H R.Chalcopyrite hydrometallurgy at atmospheric pressure:1.Review of acidic sulfate,sulfate-chloride and sulfate-nitrate process options[J].Hydrometallurgy,2013,140:163-180.
    [28]ZHANG B,LIN Y,TANG X N,XU Y H,XIE G.Mechanism of antibacterial activity of silver and praseodymium-loaded white carbon black[J].Journal of Rare Earths,2010,28:442-445.
    [29]NEPAL D,BALASUBRAMANIAN S,SIMONIAN A L,DAVIS VA.Strong antimicrobial coatings:Single-walled carbon nanotubes armored with biopolymers[J].Nano Letters,2008,8:1896-1901.
    [30]KRISHNA V,PUMPRUEG S,LEE S H,ZHAO J,SIGMUND W,KOOPMAN B,MOUDGIL B M.Photocatalytic disinfection with titanium dioxide coated multi-wall carbon nanotubes[J].Process Safety and Environmental Protection,2005,83:393-397.
    [31]XIA L X,LIU X X,ZENG J,YIN C,GAO J,LIU J S,QIU G Z.Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferrooxidans after adaptation with chalcopyrite[J].Hydrometallurgy,2008,92:95-101.
    [32]DEVASIA P,NATARAJAN K A.Adhesion of Acidithiobacillus ferrooxidans to mineral surfaces[J].International Journal of Mineral Processing,2010,94:135-139.
    [33]DONG Y B,LIN H,XU X F,ZHANG Y,GAO Y J,ZHOU S S.Comparative study on the bioleaching,biosorption and passivation of copper sulfide minerals[J].International Biodeterioration and Biodegradation,2013,84:29-34.
    [34]FLORIAN B,NO?L N,THYSSEN C,FELSCHAU I,SAND W.Some quantitative data on bacterial attachment to pyrite[J].Minerals Engineering,2011,24:1132-1138.
    [35]TANG X H,GUO K,LI H R,DU Z W,TIAN J L.Electrochemical treatment of graphite to enhance electron transfer from bacteria to electrodes[J].Bioresource Technology,2011,102:3558-3560.
    [36]FENG S,YANG H,XIN Y,GAO K,YANG J,LIU T,ZHANG L,WANG W.A novel and highly efficient system for chalcopyrite bioleaching by mixed strains of Acidithiobacillus[J].Bioresource Technology,2013,129:456-462.
    [37]PLUMB J J,MCSWEENEY N J,FRANZMANN P D.Growth and activity of pure and mixed bioleaching strains on low grade chalcopyrite ore[J].Minerals Engineering,2008,21:93-99.
    [38]LEAHY M J,SCHWARZ M P.Modelling jarosite precipitation in isothermal chalcopyrite bioleaching columns[J].Hydrometallurgy,2009,98:181-191.
    [39]YU R L,SHI L J,GU G H,ZHOU D,YOU L,CHEN M,QIU G Z,ZENG W M.The shift of microbial community under the adjustment of initial and processing pH during bioleaching of chalcopyrite concentrate by moderate thermophiles[J].Bioresource Technology,2014,162:300-307.
    [40]SAND W,GEHRKE T,JOZSA P G,SCHIPPERS A.(Bio)chemistry of bacterial leaching-Direct vs.indirect bioleaching[J].Hydrometallurgy,2001,59:159-175.
    [41]OKIBE N,GERICKE M,HALLBERG K B,JOHNSON D B.Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation[J].Applied and Environment Microbiology,2003,69:1936-1943.
    [42]HAO X D,LIANG Y L,YIN H Q,LIU H W,ZENG W M,LIU X D.Thin-layer heap bioleaching of copper flotation tailings containing high levels of fine grains and microbial community succession analysis[J].International Journal of Minerals,Metallurgy,and Materials,2017,24:360-368.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700