用户名: 密码: 验证码:
Acidianus manzaensis对不同晶体结构黄铜矿浸出的作用(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bioleaching of chalcopyrite with different crystal phases by Acidianus manzaensis
  • 作者:聂珍媛 ; 张威威 ; 刘红昌 ; 朱泓睿 ; 赵昌会 ; 张多瑞 ; 朱薇 ; 马陈燕 ; 夏金兰
  • 英文作者:Zhen-yuan NIE;Wei-wei ZHANG;Hong-chang LIU;Hong-rui ZHU;Chang-hui ZHAO;Duo-rui ZHANG;Wei ZHU;Chen-yan MA;Jin-lan XIA;Key Lab of Biometallurgy of Ministry of Education of China, School of Minerals Processing and Bioengineering, Central South University;CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences;College of Science, Hunan University of Technology;Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences;
  • 关键词:黄铜矿 ; 晶体结构 ; 生物浸出 ; Acidianus ; manzaensis ; SR-XRD ; XANES
  • 英文关键词:chalcopyrite;;crystal structure;;bioleaching;;Acidianus manzaensis;;SR-XRD;;XANES
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学资源加工与生物工程学院生物冶金教育部重点实验室;中国科学院广州地球化学研究所中国科学院成矿学与矿物学重点实验室;湖南工业大学理学院;中国科学院高能物理研究所北京同步辐射装置;
  • 出版日期:2019-03-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Projects(51774342,51404104) supported by the National Natural Science Foundation of China;; Project(2017A030313219) supported by the Natural Science Foundation of Guangdong Province,China;; Project(2015JJ3062) supported by Science Foundation for Youths of Hunan Province,China;; Projects(2017-BEPC-PT-001052,2016-BEPC-PT-000887) supported by Beijing Synchrotron Radiation Facility Public User Program,China;; Project(2016-SSRF-PT-004969) supported by the Open Funds of Shanghai Synchrotron Radiation Facility,China
  • 语种:英文;
  • 页:ZYSY201903019
  • 页数:8
  • CN:03
  • ISSN:43-1239/TG
  • 分类号:184-191
摘要
基于同步辐射X射线衍射(SR-XRD)和硫K边X射线吸收近边结构(XANES)光谱学等技术,比较研究A. manzaensis对不同晶体结构黄铜矿(α相、β相和γ相)的浸出。通过在583、773和848K热处理原始黄铜矿,获得α相、β相和γ相黄铜矿。生物浸出的结果表明,经过10 d的生物浸出,α相、β相、γ相和原始黄铜矿浸出液中[Cu~(2+)]分别为1.27、1.86、1.43和1.13 g/L,表明β相的黄铜矿比其他类型的黄铜矿更容易被A. manzaensis浸出。SR-XRD和XANES的结果表明,这4种类型黄铜矿生物浸出的残渣主要是由黄钾铁矾和黄铜矿组成,单质硫在生物浸出的初期产生。而对于β相和γ相黄铜矿生物浸出过程而言,斑铜矿在浸出的初始阶段产生,并且在第6天转化为辉铜矿。
        Bioleaching of chalcopyrite with different crystal structures(α-phase, β-phase and γ-phase) by Acidianus manzaensis was comparatively studied by synchrotron radiation based X-ray diffraction(SR-XRD) and S K-edge X-ray absorption near edge structure(XANES) spectroscopy. The α-phase, β-phase and γ-phase chalcopyrite was prepared by heating original chalcopyrite at 583, 773 and 848 K, respectively. Bioleaching results showed that [Cu~(2+)] in the leaching solution of α-phase, β-phase, γ-phase and original chalcopyrite after 10 days of bioleaching was 1.27, 1.86, 1.43 and 1.13 g/L, respectively, suggesting that β-phase had a better leaching kinetics than others. SR-XRD and XANES results indicated that jarosite and chalcopyrite were the main components in the leaching residues in all cases, and elemental sulfur formed in the early stage of bioleaching. While for β-phase and γ-phase chalcopyrite during bioleaching, bornite was produced in the initial stage of leaching, and turned into chalcocite on day 6.
引文
[1]KHOSHKHOO M,DOPSON M,SHCHUKAREV A,SANDSTR?M?.Chalcopyrite leaching and bioleaching:An X-ray photoelectron spectroscopic(XPS)investigation on the nature of hindered dissolution[J].Hydrometallurgy,2014,149:220-227.
    [2]ACRES R G,HARMER S L,BEATTIE D A.Synchrotron XPSstudies of solution exposed chalcopyrite,bornite,and heterogeneous chalcopyrite with bornite[J].International Journal of Mineral Processing,2010,94(1):43-51.
    [3]BEVILAQUA D,GARCIA O,TUOVINEN O.Oxidative dissolution of bornite by Acidithiobacillus ferrooxidans[J].Process Biochemistry,2010,45(1):101-106.
    [4]LEE J,ACAR S,DOERR D L,BRIERLEY J A.Comparative bioleaching and mineralogy of composited sulfide ores containing enargite,covellite and chalcocite by mesophilic and thermophilic microorganisms[J].Hydrometallurgy,2011,105(3):213-221.
    [5]BAI Jing,WEN Jian-kang,HUANG Song-tao,WU Biao,YAOGuo-cheng.Review on bioleaching of chaicopyrite with different mineralization[J].Chinese Journal of Rare Metals,2012,36(4):644-650.(in Chinese)
    [6]HARNEIT K,GOKSEL A,KOCK D,KLOCK JH,GEHRKE T,SAND W.Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans,Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans[J].Hydrometallurgy,2006,83(1):245-254.
    [7]AFRICA C J,van HILLE R P,HARRISON S T.Attachment of Acidithiobacillus ferrooxidans and Leptospirillum ferriphilum cultured under varying conditions to pyrite,chalcopyrite,low-grade ore and quartz in a packed column reactor[J].Applied Microbiology and Biotechnology,2013,97(3):1317-1324.
    [8]MA Jun,WANG Ju-xiang,WU Biao,WEN Jian-kang,SHANG He,WU Ming-lin.Effects of crystal structure on differences of chalcopyrite and pyrite bioleaching[J].The Chinese Journal of Nonferrous Metals,2015,25(10):2898-2904.(in Chinese)
    [9]YASUHIRO K,MASAHIKO T,SATORU ASAI T S.Copper recovery from chalcopyrite concentrate by acidophilic thermophile Acidianus brierleyi in batch and continuous-flow stirred tank reactors[J].Hydrometallurgy,2001,59:271-282.
    [10]NAOKI H,MASAHIKO H,TSUYOSHI H,MASAMI T.A case of ferrous sulfate addition enhancing chalcopyrite leaching[J].Hydrometallurgy,1997,47:37-45.
    [11]KLAUBER C.A critical review of the surface chemistry of acidic ferric sulphate dissolution of chalcopyrite with regards to hindered dissolution[J].International Journal of Mineral Processing,2008,86(1):1-17.
    [12]LIANG C L,XIA J L,YANG Y,NIE Z Y,ZHAO X J,ZHENG L,MA C Y,ZHAO Y D.Characterization of the thermo-reduction process of chalcopyrite at 65°C by cyclic voltammetry and XANESspectroscopy[J].Hydrometallurgy,2011,107(1):13-21.
    [13]LIU H C,NIE Z Y,XIA J L,ZHU H R,YANG Y,ZHAO C H,ZHENG L,ZHAO Y D.Investigation of copper,iron and sulfur speciation during bioleaching of chalcopyrite by moderate thermophile Sulfobacillus thermosulfidooxidans[J].International Journal of Mineral Processing,2015,137:1-8.
    [14]HE H,XIA J L,YANG Y,JIANG H C,XIAO C Q,ZHENG L,ZHAO Y D,QIU G Z.Sulfur speciation on the surface of chalcopyrite leached by Acidianus manzaensis[J].Hydrometallurgy,2009,99(1-2):45-50.
    [15]KARAMANEV D,NIKOLOV L,MAMATARKOVA V.Rapid simultaneous quantitative determination of ferric and ferrous ions in drainage waters and similar solutions[J].Minerals Engineering,2002,15(5):341-346.
    [16]QI Yan-shan,YE Tao,WU Chen-guang,GAO Can-zhu.Determination of Cu2+in zincate solution by biscyclohexanone oxalyldihydrazone spectrophotometry[J].Materials Protection,2011,44(4):72-74.(in Chinese)
    [17]RAVEL B,NEWVILLE M.ATHENA,ARTEMIS,HEPHAESTUS:data analysis for X-ray absorption spectroscopy using IFEFFIT[J].Journal of Synchrotron Radiation,2005,12(4):537-541.
    [18]BALAZ P,TKACOVA K,AVVAKUMOV E.The effect of mechanical activation on the thermal decomposition of chalcopyrite[J].Journal of Thermal Analysis and Calorimetry,1989,35(5):1325-1330.
    [19]BLOISE A,CATALANO M,BARRESE E,GUALTIERI A F,GANDOLFI N B,CAPELLA S,BELLUSO E.TG/DSC study of the thermal behaviour of hazardous mineral fibres[J].Journal of Thermal Analysis and Calorimetry,2016,123(3):2225-2239.
    [20]HE H,XIA J L,HONG F F,TAO X X,LENG Y W,ZHAO Y D.Analysis of sulfur speciation on chalcopyrite surface bioleached with Acidithiobacillus ferrooxidans[J].Minerals Engineering,2012,27:60-64.
    [21]OWUSU C,FORNASIERO D,ADDAI-MENSAH J,ZANIN M.Influence of pulp aeration on the flotation of chalcopyrite with xanthate in chalcopyrite/pyrite mixtures[J].International Journal of Mineral Processing,2015,134:50-57.
    [22]MORENO M E,CASILLAS N,LARIOS D E,CRUZ R,LARA R,CARREON A A,GUTIERREZ B A,BARCENA S M,PEDROZA TM.Electrochemical assessment accounting for the interaction of chalcopyrite/xanthate system[J].International Journal of Electrochemical Science,2015,10:10619-10630.
    [23]AHMADI A,SCHAFFIE M,MANAFI Z,RANJBAR M.Electrochemical bioleaching of high grade chalcopyrite flotation concentrates in a stirred bioreactor[J].Hydrometallurgy,2010,104(1):99-105.
    [24]LIU Hong-chang,XIA Jin-lan,NIE Zhen-yuan,WEN Wen,YANGYi,MA Chen-yan,ZHENG Lei,ZHAO Yi-dong.Formation and evolution of secondary minerals during bioleaching of chalcopyrite by thermoacidophilic Archaea Acidianus manzaensis[J].Transactions of Nonferrous Metals Society of China,2016,26(9):2485-2494.
    [25]MA Ya-long,LIU Hong-chang,XIA Jin-lan,NIE Zhen-yuan,ZHUHong-rui,ZHAO Yi-dong,MA Chen-yan,ZHENG Lei,HONGCai-hao,WEN Wen.Relatedness between catalytic effect of activated carbon and passivation phenomenon during chalcopyrite bioleaching by mixed thermophilic archaea at 65°C[J].Transactions of Nonferrous Metals Society of China,2017,27(6):1374-1384.
    [26]XIE H Z,HUANG H G,JIANG C,LIN H H,SUN P,LUO J S,ZOUL C,CHEN J H.A study on copper extraction from chalcopyrite concentrate by acidic hot-pressure oxidation[J].Mining and Mentallurgical Engineering,2003,23:54-59.
    [27]YANG Y,LIU W,CHEN M.XANES and XRD study of the effect of ferrous and ferric ions on chalcopyrite bioleaching at 30°C and48°C[J].Minerals Engineering,2015,70:99-108.
    [28]ZHAO H B,WANG J,HU M H,QIN W,ZHANG Y S,QIU G Z.Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans[J].Bioresource Technology,2013,149:71-76.
    [29]ZHU W,XIA J L,YANG Y,NIE Z Y,ZHENG L,MA C Y,ZHANGR Y,PENG A A,TANG L,QIU G Z.Sulfur oxidation activities of pure and mixed thermophiles and sulfur speciation in bioleaching of chalcopyrite[J].BioresourceTechnology,2011,102(4):3877-3882.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700