用户名: 密码: 验证码:
大豆籽粒蛋白与脂肪含量上位性QTLs分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Epistatic QTLs Analysis of Protein and Oil Contents in Soybean (Glycine Max L. Merr.) Seeds
  • 作者:白玉哲 ; 马钰聪 ; 孟一泽 ; 廉瑞娇 ; 王莹 ; 李喜焕 ; 张彩英
  • 英文作者:BAI Yuzhe;MA Yucong;MENG Yize;LIAN Ruijiao;WANG Ying;LI Xihuan;ZHANG Caiying;North China Key Laboratory of Crop Germplasm Resources,Ministry of Education;College of Agronomy,Hebei Agricultural University;College of Life Sciences,Hebei Agricultural University;
  • 关键词:大豆 ; 蛋白 ; 脂肪 ; QTLs ; 上位性效应 ; 基因互作
  • 英文关键词:soybean;;protein;;oil;;QTLs;;epistatic effects;;gene interactions
  • 中文刊名:NKDB
  • 英文刊名:Journal of Agricultural Science and Technology
  • 机构:河北农业大学农学院教育部华北作物种质资源研究与利用重点实验室;河北农业大学生命科学学院;
  • 出版日期:2019-06-15
  • 出版单位:中国农业科技导报
  • 年:2019
  • 期:v.21;No.142
  • 基金:河北省高等学校创新创业教育教学改革研究与实践项目(2017cxcy034);; 大学生创新创业训练计划项目(201810086004);; 现代农业科技奖励性后补助资金项目(17927670H);; 河北省科技计划项目(16227516D-1)资助
  • 语种:中文;
  • 页:NKDB201906005
  • 页数:7
  • CN:06
  • ISSN:11-3900/S
  • 分类号:42-48
摘要
大豆籽粒富含蛋白与脂肪,是人类植物蛋白与食用油重要来源;然而,蛋白、脂肪含量属多基因控制数量性状,尽管已有相关QTLs报道,但多是针对单个QTL进行分析,而很少有关于上位性QTLs的报道。鉴于此,利用大豆RIL群体,在4种环境条件下评价其籽粒蛋白与脂肪含量,结合SNP基因型进行上位性QTLs分析发现,定位到48对控制籽粒蛋白、55对控制籽粒脂肪含量上位性QTLs,涉及大豆所有染色体;进一步分析发现,有19对上位性QTLs同时与籽粒蛋白和脂肪含量相关,具体包括12对定位区间完全相同的QTLs、2对定位区间含共同标记的QTLs以及5对定位区间距离不超过5 c M的QTLs;同时发现,19对上位性QTLs分布在除11号染色体以外的19条染色体,其中以13号染色体分布数量最多,其次为1号染色体。上述结果不仅增添了控制大豆蛋白与脂肪含量上位性QTLs,而且为揭示二者之间的负相关关系提供了QTL间/基因间互作方面的分子证据。
        Soybean is an important crops in the world due to its high seed protein and oil contents,while the contents of seed protein and oil attributed to the quantitative traits which were controlled by multiple minor-genes. Though there were many related QTLs reported,most of them only focused on the single additive QTLs,and few of them payed attentions to the epistatic QTLs. In this paper,a soybean RIL population( ZL) was used to study the epistatic QTLs of seed protein and oil contents by analyzing ZL population using Illumina BARCSoy SNP6 K Beadchip and detecting the phenotypes under four different environments. The results showed that there were 48 pairs of epistatic QTLs associated with protein content and 55 pairs of epistatic QTLs related to oil content in soybean seeds. Furthermore,there were 19 pairs of co-located epistatic QTLs controlling the protein and oil contents simultaneously. Among these co-located epistatic QTLs,12 pairs of them shared the same QTL mapping regions,2 pairs of them shared one same marker and five pairs of them had the QTLs regions not above 5 c M genetic distance,which could be regarded as the same QTL. Meanwhile,the results also showed that these epistatic QTLs located on nineteen chromosomes of soybean except for the chromosome 11. Thus,this study identified many epistatic QTLs for soybean seed protein and oil contents,which not only could be used for soybean quality genetic improvements in future,but also offered some evidences for reveal the negative relationships between seed protein and oil contents in soybean.
引文
[1]Bolon Y T,Joseph B,Cannon S B,et al..Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean[J].BMC Plant Biol.,2010,10(1):41.
    [2]Phansak P,Soonsuwon W,Hyten D L,et al..Multipopulation selective genotyping to identify soybean[Glycine max(L.)Merr.]seed protein and oil QTLs[J].Genes Genom.Genet.,2016,6(6):1635-1648.
    [3]Leamy L J,Zhang H Y,Li C B,et al..A genome-wide association study of seed composition traits in wild soybean(Glycine soja)[J].BMC Genomics,2017,18(1):18.
    [4]Wang X Z,Jiang G L,Green M,et al..Identification and validation of quantitative trait loci for seed yield,oil and protein contents in two recombinant inbred line populations of soybean[J].Mol.Genet.Genomics,2014,289(5):935-949.
    [5]Patil G,Mian R,Vuong T,et al..Molecular mapping and genomics of soybean seed protein:A review and perspective for the future[J].Theor.Appl.Genet.,2017,130(10):1975-1991.
    [6]Li W B,Sun D S,Du Y P,et al..Quantitative trait loci underlying the development of seed composition in soybean(Glycine max L.Merr.)[J].Genome,2007,50(12):1067.
    [7]沈岩茹,刘春燕,姜振峰,等.大豆油分含量稳定性QTL定位[J].分子植物育种,2014,12(2):254-261.Shen Y R,Liu C Y,Jiang Z F,et al..QTL analysis of stability for oil content in soybean[J].Mol.Plant Breed.,2014,12(2):254-261.
    [8]王琳琳,刘春燕,姜振峰,等.多环境条件下大豆蛋白质含量稳定性QTL分析[J].中国油料作物学报,2014,36(4):443-449.Wang L L,Liu C Y,Jiang Z F,et al..Analysis of QTLunderlying protein content of soybean in multi-environments[J].Chin.J.Oil Crop Sci.,2014,36(4):443-449.
    [9]Van K,Mchale L K.Meta-analyses of QTLs associated with protein and oil contents and compositions in soybean[Glycine max(L.)Merr.]seed[J].Int.J.Mol.Sci.,2017,18(6):1180.
    [10]Lestari P,Van K,Lee J,et al..Gene divergence of homeologous regions associated with a major seed protein content QTL in soybean[J].Front.Plant Sci.,2013,4(1):176.
    [11]Wang J,Chen P,Wang D,et al..Identification and mapping of stable QTL for protein content in soybean seeds[J].Mol.Breed.,2015,35(3):92.
    [12]Hyten D L,Pantalone V R,Sams C E,et al..Seed quality QTL in a prominent soybean population[J].Theor.Appl.Genet.,2004,109(3):552-561.
    [13]Warrington C V,Abdel-Haleem H,Hyten D L,et al..QTL for seed protein and amino acids in the Benning×Danbaekkong soybean population[J].Theor.Appl.Genet.,2015,128:839-850.
    [14]Diers B W,Keim P,Fehr W R,et al..RFLP analysis of soybean seed protein and oil content[J].Theor.Appl.Genet.,1992,83:608-612.
    [15]Qi Z M,Pan J B,Han X,et al..Identification of major QTLs and epistatic interactions for seed protein concentration in soybean under multiple environments based on a high-density map[J].Mol.Breed.,2016,36(5):55.
    [16]Qi Z M,Sun Y N,Wu Q,et al..A meta-analysis of seed protein concentration QTL in soybean[J].Can.J.Plant Sci.,2011,91:221-230.
    [17]Hwang E Y,Song Q J,Jia G F,et al..A genome-wide association study of seed protein and oil content in soybean[J].BMC Genomics,2014,15(1):1.
    [18]Eskandari M,Cober E R,Rajcan I.Genetic control of soybean seed oil:I.QTL and genes associated with seed oil concentration in RIL populations derived from crossing moderately high-oil parents[J].Theor.Appl.Genet.,2013,126(2):483-495.
    [19]Cao Y C,Li S G,Wang Z L,et al..Identification of major quantitative trait loci for seed oil content in soybeans by combining linkage and genome-wide association mapping[J].Front.Plant Sci.,2017,8:1222.
    [20]Li X H,Kamala S,Tian R,et al..Identification and validation of quantitative trait loci controlling seed isoflavone content across multiple environments and backgrounds in soybean[J].Mol.Breed.,2018,38(1):8.
    [21]Baianu I C,You T,Costescu D,et al..Determination of soybean oil,protein and amino acid residues in soybean seeds by high resolution nuclear magnetic resonance(NMRS)and near infrared(NIRS)[J].Nat.Precedings,2012,9(2):1-22.
    [22]常立国,何坤辉,崔婷婷,等.玉米出籽率的QTL定位及其与环境互作分析[J].农业生物技术学报,2017,25(4):517-525.Chang L G,He K H,Cui T T,et al..QTL mapping and QTL×environment interaction analysis of kernel ratio in Maize(Zea mays)[J].J.Agric.Biotech.,2017,25(4):517-525.
    [23]艾丽娟,陈强,杨春燕,等.大豆籽粒硬实加性和上位性QTL定位[J].作物学报,2018,44(6):852-858.Ai L J,Chen Q,Yang C Y,et al..Mapping main-effect and epistatic QTL for hard seededness in soybean[J].Acta Agron.Sin.,2018,44(6):852-858.
    [24]梁慧珍,余永亮,杨红旗,等.大豆产量及主要农艺性状QTL的上位性互作和环境互作分析[J].作物学报,2014,40(1):37-44.Liang H Z,Yu Y L,Yang H Q,et al..Epistatic effects and QTL×environment interaction effects of QTLs for yield and agronomic traits in soybean[J].Acta Agron.Sin.,2014,40(1):37-44.
    [25]Pathan S M,Vuong T,Clark K,et al..Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean[J].Crop Sci.,2013,53(3):765-774.
    [26]Kim M,Schultz S,Nelson R L.Identification and fine mapping of a soybean seed protein QTL from PI 407788A on chromosome 15[J].Crop Sci.,2016,56,219-225.
    [27]Joseph B.Genomic analysis of a major seed protein/oil QTLregion on soybean linkage group I[D].USA:Iowa State University,Doctor Dissertation,2009.
    [28]Zhang Y H,Liu M F,He J B,et al..Marker-assisted breeding for transgressive seed protein content in soybean[Glycine max(L.)Merr.][J].Theor.Appl.Genet.,2015,128:1061-1072.
    [29]何小红.应用遗传交配设计检测数量性状上位性QTL方法的研究[D].南京:南京农业大学,博士学位论文,2010.He X H.Studies on statistical methods for mapping epistatic QTL using genetic mating designs[D].Nanjing:Nanjing Agricultural University,Doctoral Dissertation,2010.
    [30]汪保华,武耀廷,黄乃泰,等.陆地棉重组自交系产量及产量构成因子性状的上位性QTL分析[J].作物学报,2007,33(11):1755-1762.Wang B H,Wu Y T,Huang N T,et al..QTL analysis of epistatic effects on yield and yield component traits for elite hybrid derived-RILs in upland cotton[J].Acta Agron.Sin.,2007,33(11):1755-1762.
    [31]张先亮,高俊山,宋国立,等.陆地棉中G6主要性状主效和上位性QTL分析[J].分子植物育种,2009,7(2):312-320.Zhang X L,Gao J S,Song G L,et al..Additive and epistatic effects QTL analysis on upland cotton CRI-G6[J].Mol.Plant Breed.,2009,7(2):312-320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700