用户名: 密码: 验证码:
库水位变动条件下柱状危岩体变形破坏机理
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Deformation and failure mechanism of pillar-shaped dangerous rock mass under resenoir's water level fluctuation
  • 作者:陈小婷 ; 王健 ; 黄波 ; 谭建民
  • 英文作者:CHEN Xiaoting;WANG Jian;HUANG Bolin;TAN Jianmin;Key Laboratory of Disaster Prevention and Mitigation,Three Gorges University;Wuhan Center of China Geological Survey;
  • 关键词:水位变动 ; 柱状危岩体 ; 岩体劣化 ; 破坏区扩展 ; 压溃失稳模式
  • 英文关键词:water level fluctuation;;rock mass deterioration;;pillar-shaped dangerous rock mass;;failure zone propagation;;collapse failure mode
  • 中文刊名:ZGDH
  • 英文刊名:The Chinese Journal of Geological Hazard and Control
  • 机构:三峡大学防灾减灾湖北省重点实验室;中国地质调查局武汉地质调查中心;
  • 出版日期:2019-04-15
  • 出版单位:中国地质灾害与防治学报
  • 年:2019
  • 期:v.30;No.120
  • 基金:国家重点研发计划项目(2018YFC1504803);; 中国地质调查局项目(121201009000150018)
  • 语种:中文;
  • 页:ZGDH201902003
  • 页数:10
  • CN:02
  • ISSN:11-2852/P
  • 分类号:13-22
摘要
三峡水库周期性水位变动造成了部分消落带岩体劣化,其具体表现为强度下降和宏观裂隙增多,这使得一些柱状危岩体被发现或需要重新认识,包括箭穿洞、曲子滩和棺木岭等危岩体。这些柱状危岩体三维边界清晰,由"硬-相对软"的岩性组成,主要受控于相对软的硬岩基座岩体。采用伪时间增量的方式模拟岩石强度的时间相关劣化效应,数值分析了多水位变动周期下棺木岭危岩体裂缝和破坏区的扩展情况。危岩体初始破坏区主要集中在基座趾部岩体。随着水位变动周期增多,裂缝和破坏区由危岩体踵部和趾部相对扩展,破坏区主要集中在危岩体踵部。10次水位周期计算所得破坏区比相同时步、没有劣化效应时增加了近4倍,且以拉张破坏为主。周期性水位变动造成的岩体劣化强烈加快了柱状危岩体演化进程,同时影响了其破坏机理。从数值分析来看,棺木岭危岩体的变形破坏模式从原来的倾倒为主将转为以压溃崩塌为主。水位变动条件下岩石强度的时间相关劣化效应及其对柱状危岩体的影响研究将为三峡水库危岩体防治提供重要技术支撑。
        The periodic water level fluctuation of the Three Gorges Reservoir caused the deterioration of the rock mass in fluctuation zone,which is characterized by a decrease in strength and an increase in macroscopic fractures. Some dangerous rock mass are discovered or need to be re recognized,including Jianchuandong,Quzitan and Guanmuling dangerous rockmass. The boundaries of these dangerous rockmass are clear. The dangerous rockmass are built by the lithology of "hard-relative soft" rock,mainly controlled by the base mass,which is relative soft. Adopted pseudo time increment to simulate the time-dependent deteriorating effect of the rockmass in the fluctuation zone,the propagation of fractures and the failure zone of Guanmuling dangerous rockmass under multi-periods of water level fluctuation are analyzed. As the water level fluctuation cycles increase,fractures and failure zone are expanded from the heel and toe of the dangerous rockmass,and the main failure zonesare concentrated in the heel. The failure zone calculated in the condition of ten water level cycles increased by nearly 4 times compared with the same calculating time steps with no deteriorating effect,and the failure is mainly tensile. The rock mass deterioration resulted from periodic water level fluctuation affected the failure mechanism of pillar-shaped dangerous rock mass and accelerated this evolution process. The results of numerical analysis shows that the main deformation and failure mode of Guanmuling rock fall are transferred from topple to collapse. This study will provide important technical support for the prevention and control of landslides in the Three Gorges Reservoir.
引文
[1]殷跃平.三峡库区地下水渗透压力对滑坡稳定性影响研究[J].中国地质灾害与防治学报,2003,14(3):1-8.YIN Yueping. Seepage pressure effect on landslide stability at the Three Gorges Reservoir Area[J]. The Chinese Journal of Geological Hazard and Control,2003,14(3):1-8.
    [2]陈洪凯,唐红梅.三峡水库区危岩防治技术[J].中国地质灾害与防治学报,2005,16(2):105-110.CHEN Hongkai,TANG Hongmei. Research on control techniques to unstable dangerous rock mass in the Three Gorges Reservoir Area[J]. The Chinese Journal of Geological Hazard and Control,2005,16(2):105-110.
    [3]文海家,张永兴,柳源.三峡库区地质灾害防减灾战略关键问题[J].中国地质灾害与防治学报,2004,15(2):22-28.WEN Haijia,ZHANG Yongxing,LIU Yuan. Some crucial problems of controlling geological hazard in the section of the Three Gorges Reservoir[J]. The Chinese Journal of Geological Hazard and Control,2004,15(2):22-28.
    [4] YIN Yueping,HUANG Bolin,WANG Wenpei,et al.Reservoir-induced landslides and risk control in Three Gorges Project on Yangtze River,China[J]. Journal of Rock Mechanics and Geotechnical Engineering,2016(8):577-595.
    [5] HUANG Bolin,ZHANG Zhihua.,YIN Yueping,et al.A case study of pillar-shaped rock mass failure in the Three Gorges Reservoir Area,China[J]. Quarterly Journal of Engineering Geology and Hydrogeology,2016,34:1-8.
    [6] HUNGR O,EVANS S G. The occurrence and classification of massive rock slope failure[J].Felsbau-Rock and Soil Engineering,2004(22):16-23.
    [7] FENG Zhen,LI Bin,YINYueping,et al. Rockslides on limestone cliffs with subhorizontal bedding in the southwestern calcareous area of China[J]. Nature Hazards and Earth System Sciences,2014,14:2627-2635.
    [8] ROHN J,RESCH M,SCHNEIDER H,et al. Largescale lateral spreading and related mass movements in the Northern Calcareous Alps[J]. Bulletin of Engineering Geology and the Environment,2004,63:71-75.
    [9]殷跃平.三峡库区边坡结构及失稳模式研究[J].工程地质学报,2005,13(2):145-154.YIN Yueping. Human-cutting slope structure and failure pattern at the Three Gorges Reservoir[J].Chinese Journal of Engineering Geology,2005,13(2):145-154.
    [10] ZHUANG Xiaoying,CHUN Junwei,ZHU Hehua. A comparative study on unfilled and filled crack propagation for rock-like brittle material[J].Theoretical and Applied Fracture Mechanics,2014,72:110-120.
    [11] DEBASIS DEB,KAMAL C DAS. Extended finite element method for the analysis of discontinuities in rock masses[J]. Geotechnical and Geological Engineering,2010,28(5):643-659.
    [12] SHI Luyang,YU Tiantang,BUI Tinh. Numerical modelling of hydraulic fracturing in rock mass by Xfem[J]. Soil Mechanics&Foundation Engineering,2015,52(2):74-83.
    [13] WANG C,ZHANG Q Y. Study of the crack propagation model under seepage-stress coupling based on xfem[J]. Geotechnical&Geological Engineering,2017(6):1-12.
    [14] OWEN D R J,FENG Y T,de SOUZA Neto E A,et al.The modelling of multi-fracturing solids and particulate media[J]. Int J Numer Meth Eng,2004,60:317-339.
    [15] XIANG J,MUNJIZA A,LATHAM J P,et al. On the validation of DEM and FEM/DEM models in 2D and3D[J]. Eng Comput,2009,26:673-687.
    [16] LATHAM J P,XIANG J,BELAYNEH M,et al.Modelling stress-dependent permeability in fractured rock including effects of propagating and bending fractures[J]. Int J Rock Mech Min Sci,2012,57:100-112.
    [17] MORRIS J P,RUBIN M B,BLOCK G I,et al.Simulations of fracture and fragmentation of geologic materials using combined FEM/DEM analysis[J]. Int J Impact Eng,2006,33:463-473.
    [18] EBERHARDT E,STEAD D,COGGANJ S,et al.Hybrid finite-/discrete-element modelling of progressive failure in massive rock slopes[C]. ISRM2003-Technology roadmap for rock mechanics,South African Institute of Mining and Metallurgy,2003:274-279.
    [19] MAHABADI O K,GRASSELLI G,MUNJIZA A. YGUI:A graphical user interface and pre-processor for the combined finite-discrete element code,Y2D,incorporating material heterogeneity[J].Comput Geosci,2010,36:241-252.
    [20] MAHABADI O K,COTTRELL BE,GRASSELLI G.An example of realistic modelling of rock dynamics problems:FEM/DEM simulation of dynamic brazilian test on barre granite[J]. Rock Mech Rock Eng,2010,43:707-716.
    [21] LIU HY,HAN HAOYU,AN HM,et al. Hybrid finitediscrete element modelling of asperity degradation and gouge grinding during direct shearing of rough rock joints[J]. Int J Coal Sci Technol,2016,3(3):295-310.
    [22] MAXIMILIANO R. VERGARA,MICHEL Van Sint Jan,et al. Numerical model for the study of the strength and failure modes of rock containing nonpersistent joints[J]. Rock Mech Rock Eng,2016,49:1211-1226.
    [23] Peng-Zhi PAN,Jonny RUTQVIST,Xia-Ting FENG,et al. An approach for modeling rock discontinuous mechanical behavior under multiphase fluid flow conditions[J]. Rock Mech Rock Eng,2014,47:589-603.
    [24] LAN Hengxing,MARTIN C D,ANDERSSON J C.Evolution of in situ rock mass damage induced by mechanical-thermal loading[J]. Rock Mech Rock Eng,2013,46:153-168.
    [25] VALENTIN Gischig,GIONA Preisig,ERIK Eberhardt.Numerical investigation of seismically induced rock mass fatigue as a mechanism contributing to the progressive failure of deep-seated landslides[J]. Rock Mech Rock Eng,2016,49:2457-2478.
    [26] LI Xiang,KONIETZKY Heinz. Numerical simulation schemes for time-dependent crack growth in hard brittle rock[J]. Acta Geotechnica,2015,10:513-531.
    [27] H KONIETZKY,A HEFTENBERGER,M FEIGE.Life-time prediction for rocks under static compressive and tensile loads:a new simulation approach[J].Acta Geotechnica,2009,4:73-78.
    [28]刘新荣,傅晏,王永新,等.水-岩相互作用对库岸边坡稳定的影响研究[J].岩土力学,2009,30(3):613-618.LIU Xinrong,FU Yan,WANG Yongxin,et al. Stability of reservoir bank slope under water-rock interaction[J]. Rock and Soil Mechanics,2009,30(3):613-618.
    [29]汤连生,张鹏程,王思敬.水-岩化学作用的岩石宏观力学效应的试验研究[J].岩石力学与工程学报,2002,21(4):526-531.TANG Liansheng,ZHANG Pengcheng,WANG Sijing.Testing study on macroscopic mechanics effect of chemical action of water on rocks[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(4):526-531.
    [30]王运生,吴俊峰,魏鹏,等.四川盆地红层水岩作用岩石弱化时效性研究[J].岩石力学与工程学报,2009(增刊1):3102-3108.WANG Yunsheng,WU Junfeng,WEI Peng,et al.Research on time effect of rock weakening by waterrock interaction of redbeds in Sichuan basin[J].Chinese Journal of Rock Mechanics and Engineering,2009(S1):3102-3108.
    [31]黄波林,刘广宁,王世昌.三峡库区巴东段岸坡改造调查[R].武汉地质调查中心,2016.HUANG Bolin,LIU Guangning,WANG Shichang.Geological survey on slope transformation of badong course of Three Gorges Reservoir[R]. Wuhan Center of China Geological Survey,2016.
    [32]王文沛,李滨,黄波林,等.三峡库区近水平厚层斜坡滑动稳定性研究[J].地质力学学报,2016,22(3):725-732.WANG Wenpei,LI Bin,HUANG Bolin,et al. Stability analysis of sub=horizontal thick-bedded slope in three gorges reservoir area:a case study of jianchuandong dangerous rockmass in Wushan,Chongqing[J].Journal of Geomechanics,2016,22(3):725-732.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700