用户名: 密码: 验证码:
Ti_3(Ge_(1-x)Si_x)C_2固溶体力学和热力学性能的第一性原理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:First-principles investigations of mechanical and thermal properties of Ti_( 3 )(Ge_(1-x)Si_x)C_2 solid solutions
  • 作者:李亚盟 ; 金文媛 ; 焦照勇
  • 英文作者:LI Ya-Meng;JIN Wen-Yuan;JIAO Zhao-Yong;Engineering Laboratory for Optoelectronic Technology and Advanced Manufacturing of Henan Province, College of Physics and Materials Science, Henan Normal University;
  • 关键词:Ti_3(Ge_(1-x)Si_x)C_2固溶体 ; 第一性原理计算 ; 电子结构 ; 热力学性质
  • 英文关键词:Ti_3(Ge_(1-x)Si_x)C_2 solid solution;;First-principles calculation;;Electronic properties;;Thermal properties
  • 中文刊名:YZYF
  • 英文刊名:Journal of Atomic and Molecular Physics
  • 机构:河南师范大学物理与材料科学学院光电子技术及先进制造河南省工程实验室;
  • 出版日期:2019-02-15 14:14
  • 出版单位:原子与分子物理学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(11347004);; 河南省自然科学基金(182300410203)
  • 语种:中文;
  • 页:YZYF201903021
  • 页数:7
  • CN:03
  • ISSN:51-1199/O4
  • 分类号:137-143
摘要
采用基于密度泛函理论(DFT)的第一性原理平面波超软赝势方法,系统研究了Ti_3(Ge_(1-x)Si_x)C_2(x=0, 0.5, 1)固溶体的晶体结构、弹性性质以及热力学性能.研究结果表明,Ti_3(Ge_(1-x)Si_x)C_2体系均具有力学和热力学稳定结构,并且为脆性材料;Ti_3(Ge_(1-x)Si_x)C_2固溶体的力学性能随Si含量的增加而提高;Ti_3(Ge_(1-x)Si_x)C_2固溶体在室温下具有稳定的晶格结构和较高的晶格热导率,有望用于一些需要良好散热性能电子元器件的封装材料.
        The thermodynamic stability, mechanical and thermal properties of the recently synthesized Ti_( 3 )(Ge_(1-x)Si_x)C_2 solid solutions are studied Using first-principles calculations. The calculated results show that all these compounds have a thermodynamically stable structure, and are brittle materials. At the same time, they also show the characteristics of metals. The mechanical properties of Ti_3(Ge_(1-x)Si_x)C_2 solid solution increase with the increase of the concentration of Si. In addition, the lattice thermal conductivity of Ti_3(Ge_(1-x)Si_x)C_2 solid solution at 300 K is slightly lower than that of metal, which is the same as the thermal conductivity of most alloys. It can be used as a thermal conductive material at room temperature.
引文
[1] Mane R B,Haribabu A,Panigrahi B B.Synthesis and sintering of Ti3GeC2 MAX phase powders [J].Ceram.Int.,2018,44:890.
    [2] Ganguly A,Zhen T,Barsoum M W.Synthesis and mechanical properties of Ti3GeC2 and Ti3(SixGe1-x)C2(x = 0.5,0.75) solid solutions[J].J.Alloys Compd.,2004,376:287.
    [3] Hu J Q,Xie M,Chen J L,et al.First principles study of electronic and elastic properties of Ti3AC2(A = Si,Sn,Al,Ge) phases[J].Acta Phys.Sin.,2017,66(5) 057102 (in Chinese) [胡洁琼,谢明,陈家林,等.Ti3AC2相(A = Si,Sn,Al,Ge)电子结构、弹性性质的第一性原理研究[J].物理学报,2017,66:057102]
    [4] Cui S,Fen W G,Hu H,et al.Effect of high hydrostatic pressure on structural stability of Ti3GeC2:A first-principles investigation[J].J.Solid State Chem.,2011,184:786.
    [5] Feng W,Hu H,Cui S,et al.First-principles studies on Ti3Si0.5Ge0.5C2 under pressure[J].Solid State Commun.,2011,151:1564.
    [6] Jiao Z Y,Li Y M,Ma S H.First-principles investigations of phase stability,mechanical,thermal and optical properties of Ti3(Al1-xSix)C2 solid solutions[J].J.Alloys Compd.,2017,724:603.
    [7] Nye J F.Physical properties of crystals[M].Oxford:Oxford University Press,1985.
    [8] Neumann G S,Stixrude L.First-principles elastic constants for the hcp transition metals Fe,Co,and Re at high pressure[J].Phys.Rev.B,1999,60:791.
    [9] Voigt W.Lehrbuch der kristallphysik[M].Leipzig:Taubner BG,1928,960.
    [10] Reuss A,Angew Z.Berechnung del fliessgrenze von mischkristallen auf grund der plastizitatbedingung for einkristalle[J].Math.Mech.,1929,9:49.
    [11] Hill R.The elastic behavior of a crystalline aggregate[J].Proceedings of the Physical Society:Section A,1952,65:349.
    [12] Pugh S F.Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J],Philos.Mag.,1954,45:823.
    [13] Chen W G,Li Y M,Jiao Z Y.Elastic,electronic and optical properties of Cr1-xNbxSi2 solid solutions by first principle calculations[J].J.At.Mol.Phys.,2018,35:477.(in Chinese)[陈万高,李亚盟,焦照勇.Cr1-xNbxSi2固溶体弹性性质、电子结构和光学性质的理论研究[J].原子与分子物理学报,2018,35:477]
    [14] Anderson O L.A simplified method for calculating the Debye temperature from elastic constants[J].J.Phys.Chem.Solids,1963,24:909.
    [15] Poirier J P.Introduction to the physics of the Earth’s interior[M].Cambridge:Cambridge University Press,2000,264.
    [16] Morelli D T,Slack G A.High Thermal Conductivity Materials [M].New York:Springer,2006,45.
    [17] Belomestnykh V N,Tesleva E P.Interrelation between anharmonicity and lateral strain in quasi-isotropic polycrystalline solids[J].Tech.Phys.,2004,49:1098.
    [18] Julian C L.Theory of Heat Conduction in Rare-Gas Crystals[J].Phys.Rev.A,1965,137:128.
    [19] Dhakal C,Aryal S,Sakidja R,et al.Approximate lattice thermal conductivity of MAX phases at high temperature[J].J.Eur.Ceram.Soc.,2015,35:3203.
    [20] Fine M E,Brown L D,Marcus H L.Elastic constants versus melting temperature in metals[J].Scr.Metall.,1984,18:951.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700