用户名: 密码: 验证码:
龙骨状纳米结构TATB的构筑与热分解动力学研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction and Thermal Decomposition Kinetics of the Keel-like Nanostructure TATB
  • 作者:李萍 ; 敖登高娃 ; 李纯志 ; 段晓惠 ; 裴重华
  • 英文作者:LI Ping;AODENG Gao-wa;LI Chun-zhi;DUAN Xiao-hui;PEI Chong-hua;Southwest University of Science and Technology,State Key Laboratory of Environment?friendly Energy Materials;Lu zhou North Chemical Industries Co.Ltd.;
  • 关键词:三氨基三硝基苯(TATB) ; 溶剂/非溶剂法 ; 龙骨状纳米结构 ; 热分解动力学
  • 英文关键词:1,3,5-triamino-2,4,6-trinitrobenzene(TATB);;solvent/non-solvent method;;keel-likenanostructure;;thermal decomposition kinetics
  • 中文刊名:HNCL
  • 英文刊名:Chinese Journal of Energetic Materials
  • 机构:西南科技大学环境友好能源材料国家重点实验室;泸州北方化学工业有限公司;
  • 出版日期:2018-11-01 14:15
  • 出版单位:含能材料
  • 年:2019
  • 期:v.27;No.160
  • 基金:国家自然科学基金资助(11572270)
  • 语种:中文;
  • 页:HNCL201902013
  • 页数:7
  • CN:02
  • ISSN:51-1489/TK
  • 分类号:59-65
摘要
基于纳米结构对材料性能的调控,采用溶剂/非溶剂法来构筑三氨基三硝基苯(TATB)的纳米结构。通过强的非溶剂效应和温度效应,制备得到龙骨状纳米结构TATB。采用场发射扫描电镜(FE-SEM)与透射电镜(TEM)观察样品的微观形貌,X射线衍射分析(XRD)和激光粒度分析仪测试样品的晶相和粒径分布。结果表明,所得样品整体呈龙骨状结晶,晶型较原料TATB未发生改变,粒径分布为70~400 nm。不同升温速率下的热分析结果表明,龙骨状TATB的热分解峰温较原料TATB提前1.54~2.91℃,表观活化能(E_a)提高0.29 kJ·mol~(-1),对热刺激的敏感性降低;通过微分法计算得出龙骨状TATB的热分解机理为随机核化,每一粒子有一个核,而原料则为三维扩散,其动力学方程为球形对称的Jander方程。
        Based on the regulating of nanostructure on the properties of materials, the nanostructure of 1,3,5-triamino-2,4,6-trinitrobenzene(TATB) was constructed by solvent/non-solvent method. Through strong nonsolvent effect and temperature effect, the keel-like nanostructure TATB was prepared.The microstructure of the sample was observed by field emission scanning electron microscopy(FE-SEM) and transmission electron microscopy(TEM) and the crystal phase and particle size distribution of the sample were measured by X-ray diffraction(XRD) and Laser Particle Size Analyzer. The results show that the whole morphology of obtained sample is keel-like crystalline. And the crystal form does not change compared with the raw material and the size distribution is from 70 to 400 nm. The thermal analyses at different heating rates show that the thermal decomposition peak temperature of keel-like nanostructure TATB is 1.54-2.91℃ earlier than that of raw TATB, the apparent activation energy(E_a) is increased by 0.29 kJ·mol~(-1), and the sensitivity to thermal stimulation is decreased. The thermal decomposition mechanism of keel-like nanostructure TATB obtained by differential method calculationis random nucleation(a core for a particle), whereas the raw material is three-dimension diffusion and its kinetic equation is Jander equation with sphericalsymmetry.
引文
[1] Tiwari S C,Nomura K,Kalia R K,et al. Multiple reactionpathways in shocked 2,4,6‐Triamino‐1,3,5‐trinitrobenzeneCrystal[J]. Journal of Physical Chemistry C,2017,121(29):16029-16034.
    [2] Kroonblawd M P,Sewell T D,Maillet J B. Characteristics ofenergy exchange between inter‐and intramolecular degrees offreedom in crystalline 1,3,5‐triamino‐2,4,6‐trinitrobenzene(TATB)with implications for coarse‐grained simulations ofshock waves in polyatomic molecular crystals[J]. Journal ofChemical Physics,2016,144(6):064501-064514.
    [3] Rigdon L P,Moody G L,Mcguire R R. Preparation of 1,3,5‐triamo‐2,4,6‐trinitrobenzene of submicron particle size:US,US6225503[P]. 2001.
    [4] Talawar M B,Agarwal A P,Anniyappan M,et al. Method forpreparation of fine TATB(2‐5 microm)and its evaluation inplastic bonded explosive(PBX)formulations[J]. Journal ofHazardous Materials,2006,137(3):1848-1852.
    [5] Kasar S M. Synthesis and characterization of ultrafine TATB[J]. Journal of Energetic Materials,2007,25(4):213-231.
    [6] Yang L,Ren X,Li T,et al. Preparation of ultrafine TATB andthe technology for crystal morphology control[J]. Chinese Jour?nal of Chemistry,2012,30(2):293-298.
    [7] Tan X‐R,Duan X‐H,Pei C‐H,et al. Preparation of NanoTATBby semibationrractioncrystallion[J]. Nano, 2013, 8(05):1350055-1350062.
    [8] Song X,Wang Y,Zhao S,et al. Characterization and thermaldecomposition of nanometer 2,2',4,4',6,6'‐hexanitro‐stil‐bene and 1,3,5‐triamino‐2,4,6‐trinitrobenzene fabricated bya mechanical milling method[J]. Journal of Energetic Materi?als,2017,36(2):179-190.
    [9] Huang B,Cao M,Wu X,et al. Twinned TATB nano belts:synthesis, characterization, and formation mechanism[J].Crystengcomm,2011,13(22):6658-6664.
    [10] Yang G,Nie F,Huang H,et al. Preparation and characteriza‐tion of nano‐TATB explosive[J]. Propellants,Explosives,Pyro?technics,2010,31(5):390-394.
    [11] Wang J,Wang Y,Qiao Z,et al. Self‐assembly of TATB 3D ar‐chitectures via micro‐channel crystallization and formationmechanism[J].Crystengcomm,2016,18(11):1953-1957.
    [12]杨光成,聂福德,黄辉,等.纳米TATB制备和表征[J].含能材料,2005,13(5):354-354.YANG Guang‐cheng,NIE Fu‐de,HUANG Hui,et al. Prepara‐tion and characterization of nano‐TATB[J].Chinese Journal ofEnergetic Materials(Hanneng Cailiao),2005,13(5):354-354.
    [13] Cheng M,Li P,Duan X,et al. A three‐dimensional hierarchi‐cal dandelion‐like HMX architecture formed at a liquid‐liquidinterface[J]. Crystal Research&Technology,2018,53(3):1700226-1700233.
    [14]黄新民,解挺.材料分析测试方法[M].北京:国防工业出版社,2006.HUANG Xin‐min,XIE Ting. Material analysis and testing meth‐ods[M]. Beijing:National Defense Industry Press,2006.
    [15] Xie R,Li Y,Guo B,et al. Exploring microstructure and sur‐face features of Chinese coins using non‐invasive approaches[J]. Applied Surface Science,2015,332:205-214.
    [16] Gao B,Wu P,Huang B,et al. Preparation and characteriza‐tion of nano‐1,1‐diamino‐2,2‐dinitroethene(FOX‐7)explosive[J]. New Journal of Chemistry,2014,38(6):2334-2341.
    [17] Kissinger H E. Reaction kinetics in differential thermal analysis[J]. Analytical Chemistry,1957,29(11):1702-1706.
    [18] Du R L,Wu K,Xu D A,et al. A modified Arrhenius equationto predict the reaction rate constant of Anyuan pulverized‐coalpyrolysis at different heating rates[J]. Fuel Processing Technol?ogy,2016,148:295-301.
    [19]唐万军,陈栋华.二水草酸亚铁热分解反应动力学[J].物理化学学报,2007,23(4):605-608.TANG Wan‐jun,CHEN Dong‐hua. Thermal decomposition ki‐netics of ferrous oxalate dehydrate[J]. Acta Physico?ChimicaSinica,2007,23(4):605-608.
    [20]潘云祥,管翔颖,冯增媛等.一种确定固相反应机理函数的新方法——固态草酸镍(Ⅱ)二水合物脱水过程的非等温动力学[J].无机化学学报,1999,15(2):247-251.PAN Yun‐xiang,GUAN Xiang‐ying,FENG Zeng‐yuan,et al.A new method determining mechanism function of solid statereaction‐the non‐isothermal kinetic of dehydration of nickel(Ⅱ)oxalate dihydrate in solid state[J].Chinese Journal of In?organic Chemistry,1999,15(2):247-251.
    [21] Yuwen L,Wanjun T. Ammonium metavanadate by thermalmethod[J]. Industrial&Engineering Chemistry Research,2004,43(9):2054-2059.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700