用户名: 密码: 验证码:
丙环唑和醚菌酯药液浓度、雾滴密度与其对小麦白粉病防效的关系
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of concentration, droplet density of propiconazole and kresoximmethyl on the efficacy against wheat powdery mildew
  • 作者:孔肖 ; 闫晓静 ; 杨代斌 ; 袁会珠
  • 英文作者:KONG Xiao;YAN Xiaojing;YANG Daibin;YUAN Huizhu;Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection,Chinese Academy of Agricultural Sciences;
  • 关键词:丙环唑 ; 醚菌酯 ; 雾滴密度 ; 药液浓度 ; 小麦白粉病 ; 植保无人机 ; 防治效果
  • 英文关键词:propiconazole;;kresoxim-methyl;;droplet density;;concentration;;wheat powdery mildew;;unmanned aerial vehicle(UAV);;efficacy
  • 中文刊名:NYXB
  • 英文刊名:Chinese Journal of Pesticide Science
  • 机构:中国农业科学院植物保护研究所农业部作物有害生物综合治理综合性重点实验室;
  • 出版日期:2018-06-13 14:41
  • 出版单位:农药学学报
  • 年:2018
  • 期:v.20
  • 基金:农药雾滴的杀伤半径与最佳沉积密度模型(31371969);; 农药减施增效技术效果监测与评估研究(2016YFD0201305);; 农业航空低空低容量喷雾技术(2016YFD0200703)
  • 语种:中文;
  • 页:NYXB201803008
  • 页数:8
  • CN:03
  • ISSN:11-3995/S
  • 分类号:49-56
摘要
采用室内生物测定和田间试验相结合的方法,研究了丙环唑和醚菌酯的药液浓度及雾滴密度与其对小麦白粉病防效的关系,首次提出了杀菌剂雾滴抑制中密度(即达到50%抑制率时所对应的雾滴密度,EN_(50))这一概念。结果表明:1)室内喷施丙环唑及醚菌酯药液,当丙环唑质量浓度从0.01 g/L提高到1.0 g/L时,对应的EN50值从18.7 cm~(–2)下降至5.1 cm~(–2),EN_(90)值从755.8 cm~(–2)下降至92.8 cm~(–2),雾滴杀伤半径(r50)从0.92 mm增大到1.77 mm;当醚菌酯质量浓度从0.01 g/L提高到1.0 g/L时,对应的EN_(50)值从227.1 cm~(–2)下降至1.0 cm~(–2),EN_(90)值从596.1 cm~(–2)下降至26.9 cm~(–2),雾滴杀伤半径从0.27 mm增大到4.00 mm。2)田间使用MG-1S植保无人机和背负式电动喷雾器喷施丙环唑和醚菌酯防治小麦白粉病,无人机施药液量为15.0 L/hm~2,药液质量浓度为5.0 g/L时,在小麦旗叶及倒二叶的雾滴密度分别为29.7和9.5 cm~(–2),喷施丙环唑和醚菌酯3、5、7 d后,对小麦白粉病的防效分别为41.9%、80.7%、90.2%和30.8%、67.9%、84.5%;电动喷雾器施药液量为450.0 L/hm~2,药液质量浓度为0.17 g/L时,在小麦旗叶及倒二叶的雾滴密度分别为287.9和204.2 cm~(–2),喷施丙环唑和醚菌酯3、5、7 d后的防效分别为42.1%、85.3%、94.3%和28.5%、80.1%、90.5%。研究表明,田间施用丙环唑和醚菌酯时,无需把叶片全部喷湿,只需达到一定雾滴密度即可;运用植保无人机进行高浓度、低容量喷雾时,10~30 cm~(–2)雾滴量即可达到理想的防治效果。
        The effects of concentration, droplet density of propiconazole and kresoxim-methyl on the control efficacy against wheat powdery mildew were investigated using a combination of indoor bioassay and field experiments. In this study, a new concept, inhibited medium density(EN_(50)) was defined as the density of droplet that achieve 50% inhibition rate. The results showed that: 1) In terms of the indoor propiconazole spraying tests, with the spraying concentration increased from 0.01 g/L to 1.0 g/L,the corresponding EN_(50) value decreased from 18.7 cm~(–2) to 5.1 cm~(–2), the EN_(90) value decreased from 755.8 cm~(–2) to 92.8 cm~(–2), and the biocide radius increased from 0.92 mm to 1.77 mm. With regards to indoor kresoxim-methyl spraying tests, when the spraying concentration increased from 0.01 g/L to1.0 g/L, the corresponding EN_(50) value decreased from 227.1 cm~(–2) to 1.0 cm~(–2), the EN_(90) value decreased from 596.1 cm~(–2) to 26.9 cm~(–2), and the biocide radius increased from 0.27 mm to 4.00 mm. 2) The field spraying test of propiconazole and kresoxim-methyl against wheat powdery mildew were conducted using MG-1 S UAV(unmanned aerial vehicle) and knapsack sprayer. When tested with the spray volume of 15.0 L/hm~2 for UAV at the concentration of 5.0 g/L, the droplet density on flag and 2 nd top leaf was29.7 cm~(–2) and 9.5 cm~(–2), respectively. After 3 d, 5 d and 7 d, the control efficacy was 41.9%, 80.7%,90.2% for propiconazole, respectively, and 30.8%, 67.9%, 84.5% for kresoxim-methyl, respectively.When tested with the spray volume of 450.0 L/hm~2 for knapsack sprayer at the concentration of 0.17 g/L, the droplet density on flag and 2nd top leaf was 287.9 cm~(–2) and 204.2 cm~(–2), respectively. After 3 d, 5 d and 7 d, the control efficacy was 42.1%, 85.3%, 94.3% for propiconazole, respectively, and28.5%, 80.1%, 90.5% for kresoxim-methyl, respectively. Therefore, droplet density of a certain concentration is enough to achieve good efficient spraying of fungicides. And it is not necessary to wet all the leaves. Using UAV low volume spray, 10-30 cm~(–2) droplets can achieve the ideal control efficacy.
引文
[1]杨美娟,黄坤艳,韩庆典.小麦白粉病及其抗性研究进展[J].分子植物育种,2016,14(5):1244-1254.YANG M J,HUANG K Y,HAN Q D.Research progresses on wheat powdery mildew and its resistance[J].Mol Plant Breed,2016,14(5):1244-1254.
    [2]曹学仁,赵文娟,周益林,等.2007年我国部分麦区小麦白粉菌对三唑酮的抗药性监测[J].植物保护,2008,34(6):74-77.CAO X R,ZHAO W J,ZHOU Y L,et al.Monitoring of resistance of Blumeria graminis f.sp.tritici isolates to triadimefon in 2007[J].Plant Prot,2008,34(6):74-77.
    [3]黄付根,朱其林,陈兰道,等.不同药剂及施药技术对小麦白粉病的防治效果研究[J].现代农药,2017,16(2):49-51.HUANG F G,ZHU Q L,CHEN L D,et al.Study on fungicides and application technology aganist wheat powdery mildew[J].Mod Agrochem,2017,16(2):49-51.
    [4]曹源,邓维,李永平,等.甲氨基阿维菌素苯甲酸盐药液浓度、雾滴密度及施药液量对小菜蛾防治效果的影响[J].农药学学报,2014,16(1):54-60.CAO Y,DENG W,LI Y P,et al.Effects of concentration,droplet density and spraying volume on efficacy of emamectin benzoate against Plutella xylostella L.[J].Chin J Pestic Sci,2014,16(1):54-60.
    [5]张东彦,兰玉彬,陈立平,等.中国农业航空施药技术研究进展与展望[J].农业机械学报,2014,45(10):53-59.ZHANG D Y,LAN Y B,CHEN L P,et al.Current status and future trends of agricultural aerial spraying technology in China[J].Trans Chin Soc Agric Mach,2014,45(10):53-59.
    [6]王国宾.杀虫剂雾滴大小及覆盖密度与麦蚜防效关系研究[D].北京:中国农业科学院,2016.WANG G B.Study on pesticide droplet size and deposition density with the control effect of wheat aphids[D].Beijing:Chinese Academy of Agricultural Sciences,2016.
    [7]袁会珠,王国宾.雾滴大小和覆盖密度与农药防治效果的关系[J].植物保护,2015,41(6):9-16.YUAN H Z,WANG G B.Effects of droplet size and deposition density on field efficacy of pesticides[J].Plant Prot,2015,41(6):9-16.
    [8]FISHER R W,MENZIES D R,HERNE D C,et al.Parameters of dicofol spray deposit in relation to mortality of European red mite[J].J Econ Entomol,1974,67(1):124-126.
    [9]ALM S R,REICHARD D L,HALL F R.Effects of spray drop size and distribution of drops containing bifenthrin on Tetranychus urticae(Acari:Tetranychidae)[J].J Econom Entomol,1987,80(2):517-520.
    [10]BRYANT J E,YENDOL W G.Evaluation of the influence of droplet size and density of Bacillus thuringiensis against gypsy moth larvae(Lepidoptera:Lymantriidae)[J].J Econom Entomol,1988,81(1):130-134.
    [11]朱玉坤,郑岩明,王杰,等.喷雾方式及喷液量对吡蚜酮和啶虫脒在棉田的沉积分布及棉蚜防治效果的影响[J].昆虫学报,2013,56(5):530-536.ZHU Y K,ZHENG Y M,WANG J,et al.Influences of spray method and volume on the deposition of acetamiprid and pymetrozine and their efficacy against cotton aphids in cotton fields[J].Acta Entomologica Sinica,2013,56(5):530-536.
    [12]马志强,刘国镕,严乐恩,等.小麦白粉病菌对三唑酮的抗药性测定方法的研究[J].华北农学报,1996,11(1):93-96.MA Z Q,LIU G R,YAN L E,et al.Methods for monitoring the sensitivity of wheat powdery mildew to triadimefon[J].Acta Agriculturae Boreali-Sinica,1996,11(1):93-96.
    [13]毕秋艳,马志强,韩秀英,等.离体叶段喷雾法建立小麦白粉病菌对三唑酮的敏感基线及其监测技术[J].麦类作物学报,2014,34(9):1287-1291.BI Q Y,MA Z Q,HAN X Y,et al.Study on sensitivity and monitoring technology of Blumeria graminis f.sp.tritici to triadimefon by spraying on leaf segments in vitro[J].J Trit Crops,2014,34(9):1287-1291.
    [14]刁亚梅,粟寒,李捷,等.小麦白粉病离体叶段筛选方法初探[J].浙江化工,2000(S1):78-79.DIAO Y M,LI H,LI J,et al.Preliminary study on method for screening agents against wheat powdery mildew on wheat leaves in vitro[J].Zhejiang Chem Ind,2000(S1):78-79.
    [15]农药室内生物测定试验准则杀菌剂第4部分:防治小麦白粉病试验盆栽法:NY/T 1156.4-2006[S].北京:中国农业出版社,2006.Pesticides guidelines for laboratory bioactivity tests part 4:potted plant test for fungicide control of powdery mildew on wheat:NY/T1156.4-2006[S].Beijing:China Agriculture Press,2006.
    [16]邱占奎,袁会珠,楼少巍,等.水溶性染色剂诱惑红和丽春红-G作为农药沉积分布的示踪剂研究[J].农药,2007,46(5):323-325.QIU Z K,YUAN H Z,LOU S W,et al.The research of water soluble dyes of allura red and ponceau-G as tracers for determing pesticide spray distribution[J].Agrochemicals,2007,46(5):323-325.
    [17]农药田间药效试验准则(一)杀菌剂防治禾谷类白粉病:GB/T17980.22-2000[S].北京:中国标准出版社,2000:91-93.Pesticide-guidelines for the field efficacy trials(I)-fungicides against cereal powdery mildew:GB/T 17980.22-2000[S].Beijing:Standards Press of China,2000:91-93.
    [18]崔丽,王金凤,秦维彩,等.机动弥雾法施用70%吡虫啉水分散粒剂防治小麦蚜虫的雾滴沉积密度与防效的关系[J].农药学学报,2010,12(3):313-318.CUI L,WANG J F,QIN W C,et al.Relationship between droplet density and field efficacy when appling imidacloprid 70%WGagainst wheat aphids with knapsack mist-blower[J].Chin J Pestic Sci,2010,12(3):313-318.
    [19]MUNTHALI D C,WYATT I J.Factors affecting the biological efficiency of small pesticide droplets against Tetranychus urticae eggs[J].Pest Sci,1986,17(2):155-164.
    [20]WASHINGTON J R.Relationship between the spray droplet density of two protectant fungicides and the germination of Mycosphaerella fijiensis ascospores on banana leaf surfaces[J].Pest Sci,1997,50(3):233-239.
    [21]秦维彩.单旋翼植保无人机喷雾参数优化研究[D].镇江:江苏大学,2017:103-108.QIN W C.Research on spraying parameters optimization for singlerotor plant protection UAV[D].Zhenjiang:Jiangsu University,2017:103-108.
    [22]杨帅,李学辉,王国宾,等.飞行高度对八旋翼无人机喷雾防治小麦白粉病影响初探[C]//“创新驱动与现代植保”--中国植物保护学会第十一次全国会员代表大会暨2013年学术年会论文集.青岛:中国植物保护学会,2013:251-254.YANG S,LI X H,WANG G B,et al.Effect of flight height on the control of wheat powdery mildew by spraying with eight rotor UAV[C]//Innovation driven and modern plant protection-China Society of Plant Protection the eleventh national congress of members and 2013 academic year will proceedings.Qingdao:China Society of Plant Protection,2013:251-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700