用户名: 密码: 验证码:
西藏定结高压基性麻粒岩(退变榴辉岩)的变质P-T轨迹及构造意义
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Metamorphic P-TPath of High-Pressure Mafic Granulite(Retrograded Eclogite)from Dinggye of Tibet and Its Tectonic Implication
  • 作者:丁自耕 ; 仝来喜 ; 刘小汉 ; 刘兆 ; 周学君
  • 英文作者:Ding Zigeng;Tong Laixi;Liu Xiaohan;Liu Zhao;Zhou Xuejun;State Key Laboratory of Isotope Geochemistry,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences;University of Chinese Academy of Sciences;Institute of Tibetan Plateau Research,Chinese Academy of Sciences;
  • 关键词:高压基性麻粒岩 ; P-T轨迹 ; 碰撞造山 ; 高喜马拉雅 ; 定结 ; 岩石学
  • 英文关键词:high-pressure mafic granulite;;P-T path;;collisional orogenesis;;Greater Himalaya;;Dinggye;;petrology
  • 中文刊名:DQKX
  • 英文刊名:Earth Science
  • 机构:中国科学院广州地球化学研究所同位素地球化学国家重点实验室;中国科学院大学;中国科学院青藏高原研究所;
  • 出版日期:2018-01-15
  • 出版单位:地球科学
  • 年:2018
  • 期:v.43
  • 基金:国家自然基金项目(No.41272261)
  • 语种:中文;
  • 页:DQKX201801017
  • 页数:16
  • CN:01
  • ISSN:42-1874/P
  • 分类号:226-241
摘要
定结(Dinggye)位于藏南高喜马拉雅结晶岩系的中部,研究该区域麻粒岩的变质P-T轨迹对于理解青藏高原的碰撞和抬升过程至关重要.通过对该地区的高压基性麻粒岩(退变榴辉岩)的岩相学观察,确定了4期矿物组合:(1)峰期榴辉岩相矿物组合(M_1)由石榴子石(核部)+绿辉石(假象)+石英+金红石组成;(2)高压麻粒岩相矿物组合(M_2)主要由石榴子石(幔部)+单斜辉石+斜长石+钛铁矿+角闪石+黑云母组成;(3)中压麻粒岩相矿物组合(M_3)由石榴子石(边缘)+斜方辉石+斜长石+钛铁矿+黑云母组成;(4)角闪岩相矿物组合(M_4)主要由角闪石+斜长石组成.在NCFMASHTO体系下,用THERMOCALC软件对该高压基性麻粒岩进行了热力学模拟.结合传统温压计和平均温压计计算结果,求得M_2、M_3、M_4阶段的温压条件分别为786~826℃、0.78~0.96GPa;798~850℃、0.71~0.75GPa;610~666℃、0.51~0.60GPa,这指示了一条以峰期后近等温降压(ITD)为特征的顺时针P-T轨迹.结合已有地质资料,表明定结高压基性麻粒岩(退变榴辉岩)是喜马拉雅碰撞造山的产物,峰期后经历了近等温降压的构造抬升过程.
        Dinggye is located in the central part of the Greater Himalayan crystalline complex(GHC)in southern Tibet.It is essential to investigate the metamorphic P-T path of granulite in this area to better understand the collision and uplifting process of the Tibetan plateau.The petrological study of the high-pressure mafic granulite(retrograded eclogite)from the region indicates four stages:(1)peak eclogite facies mineral assemblage(M_1)consists of garnet(core)+omphacite(psedomorph)+ quartz+rutile;(2)high-pressure granulite facies mineral assemblage(M_2)comprises garnet(mantle)+clinopyroxene+plagioclase+ilmenite+amphibole+biotite;(3)medium-pressure granulite facies assemblage(M_3)is composed of garnet(rim)+orthopyroxene+plagioclase+biotite;(4)amphibolite facies mineral assemblage(M_4)consists ofamphibole+plagioclase.Using the THERMOCALC program,the thermodynamic modeling in the NCFMASHTO system has been undertaken for the high-pressure mafic granulite.Combined with the conventional thermobarometers and the average P-T estimates,the P-Tconditions of the different metamorphic stages are estimated to be 786-826℃,0.78-0.96 GPa(M_2);798-850℃,0.71-0.75 GPa(M_3);and 610-666℃,0.51-0.60 GPa(M_4),respectively,indicating apost-peak clockwise P-T path characterized by nearly isothermal decompression.Combined with geological data available,we propose that the highpressure mafic granulite(retrograded eclogite)of the Dinggye formed during the Himalayan collisional orogeny,and underwent apost-peak tectonic uplift process of nearly isothermal decompression.
引文
Anderson,J.L.,Smith,D.R.,1995.The Effects of Temperature and F(O2)on the Al-in-Hornblende Barometer.American Mineralogist,80(5-6):549-559.https://doi.org/10.2138/am-1995-5-615
    Bézos,A.,Humler,E.,2005.The Fe3+/∑Fe Ratios of MORB Glasses and Their Implications for Mantle Melting.Geochimica et Cosmochimica Acta,69(3):711-725.https://doi.org/10.1016/j.gca.2004.07.026
    Bhadra,S.,Bhattacharya,A.,2007.The Barometer Tremolite+Tschermakite+2 Albite=2Pargasite+8Quartz:Constraints from Experimental Data at Unit Silica Activity,with Application to Garnet-Free Natural Assemblages.American Mineralogist,92(4):491-502.https://doi.org/10.2138/am.2007.2067
    Bohlen,S.R.,1987.Pressure-Temperature-Time Paths and a Tectonic Model for the Evolution of Granulites.The Journal of Geology,95(5):617-632.
    Chakungal,J.,Dostal,J.,Grujic,D.,et al.,2010.Provenance of the Greater Himalayan Sequence:Evidence from Mafic Granulites and Amphibolites in NW Bhutan.Tectonophysics,480(1-4):198-212.https://doi.org/10.1016/j.tecto.2009.10.014
    Chen,X.Y.,Tong,L.X.,Zhang,C.L.,et al.,2015.Retrograde Garnet Amphibolite from Eclogite of the Zhejiang Longyou Area:New Evidence of the Caledonian Orogenic Event in the Cathaysia Block.Chinese Science Bulletin,60(13):1207-1217(in Chinese with English abstract).
    Coleman,R.G.,Lee,D.E.,Beatty,L.B.,et al.,1965.Eclogites and Eclogites:Their Differences and Similarities.Geological Society of America Bulletin,76(5):483-508.https://doi.org/10.1130/0016-7606(1965)76[483:EAETDA]2.0.CO;2
    Corrie,S.L.,Kohn,M.J.,Vervoort,J.D.,2010.Young Eclogite from the Greater Himalayan Sequence,Arun Valley,Eastern Nepal:P-T-t Path and Tectonic Implications.Earth&Planetary Science Letters,289(3-4):406-416.https://doi.org/10.1016/j.epsl.2009.11.029
    Cottrell,E.,Kelley,K.A.,2011.The Oxidation State of Fe in MORB Glasses and the Oxygen Fugacity of the Upper Mantle.Earth and Planetary Science Letters,305(3-4):270-282.https://doi.org/10.1016/j.epsl.2011.03.014
    Daczko,N.R.,Halpin,J.A.,2009.Evidence for Melt Migration Enhancing Recrystallization of Metastable Assemblages in Mafic Lower Crust,Fiordland,New Zealand.Journalof MetamorphicGeology,27(2):167-185.https://doi.org/10.1111/j.1525-1314.2009.00811.x
    Diener,J.F.A.,Powell,R.,White,R.W.,et al.,2007.A New Thermodynamic Model for Clino-and Orthoamphiboles in the System Na2O-CaO-FeO-MgO-Al2O3-SiO2-H2O-O.Journal of Metamorphic Geology,25(6):631-656.https://doi.org/10.1111/j.1525-1314.2007.00720.x
    Ding,L.,Zhong,D.L.,1999.Metamorphic Characteristic and Geotectonic Implication of the High-Pressure Granulites from Namjagbarwa,Eastern Tibet.Science in China(Series D),29(5):385-397(in Chinese).
    Eckert,J.O.,Newton,R.,Kleppa,O.,1991.The H of Reaction and Recalibration of Garnet-Pyroxene-Plagioclase-Quartz Geobarometers in the CMAS System by Solution Calorimetry.American Mineralogist,76(1-2):148-160.
    England,P.C.,Thompson,A.B.,1984.Pressure-TemperatureTime Paths of Regional Metamorphism I.Heat Transfer during the Evolution of Regions of Thickened Continental Crust.Journal of Petrology,25(4):894-928.https://doi.org/10.1093/petrology/25.4.894
    Green,E.,Holland,T.,Powell,R.,2007.An Order-Disorder Model for Omphacitic Pyroxenes in the System JadeiteDiopside-Hedenbergite-Acmite,with Applications to Eclogitic Rocks.American Mineralogist,92(7):1181-1189.https://doi.org/10.2138/am.2007.2401
    Groppo,C.,Lombardo,B.,Rolfo,F.,et al.,2007.Clockwise Exhumation Path of Granulitized Eclogites from the Ama Drime Range(Eastern Himalayas).Journal of Metamorphic Geology,25(1):51-75.https://doi.org/10.1111/j.1525-1314.2006.00678.x
    Grujic,D.,Warren,C.J.,Wooden,J.L.,2011.Rapid Synconvergent Exhumation of Miocene-Aged Lower Orogenic Crust in the Eastern Himalaya.Lithosphere,3(5):346-366.https://doi.org/10.1130/L154.1
    Guilmette,C.,Indares,A.,Hébert,R.,2011.High-Pressure Anatectic Paragneisses from the Namche Barwa,Eastern Himalayan Syntaxis:Textural Evidence for Partial Melting,Phase Equilibria Modeling and Tectonic Implications.Lithos,124(1-2):66-81.https://doi.org/10.1016/j.lithos.2010.09.003
    Harley,S.L.,1989.The Origins of Granulites:A Metamorphic Perspective.Geological Magazine,126(3):215-247.https://doi.org/10.1017/s0016756800022330
    Hodges,K.V.,2000.Tectonics of the Himalaya and Southern Tibet from Two Perspectives.Geological Society of America Bulletin,112(3):324-350.https://doi.org/10.1130/0016-7606(2000)112<0324:TOTHAS>2.3.CO;2
    Holland,T.,Blundy,J.,1994.Non-Ideal Interactions in Calcic Amphiboles and Their Bearing on AmphibolePlagioclase Thermometry.Contributions to Mineralogy and Petrology,116(4):433-447.https://doi.org/10.1007/BF00310910
    Holland,T.,Powell,R.,2003.Activity-Composition Relations for Phases in Petrological Calculations:An Asymmetric Multicomponent Formulation.Contributions to Mineralogy and Petrology,145(4):492-501.https://doi.org/10.1007/s00410-003-0464-z
    Holland,T.J.B.,Powell,R.,1998.An Internally Consistent Thermodynamic Data Set for Phases of Petrological Interest.Journal of Metamorphic Geology,16(3):309-343.https://doi.org/10.1111/j.1525-1314.1998.00140.x
    Jessup,M.J.,Cottle,J.M.,2010.Progression from SouthDirected Extrusion to Orogen-Parallel Extension in the Southern Margin of the Tibetan Plateau,Mount Everest Region,Tibet.The Journal of Geology,118(5):467-486.https://doi.org/10.1086/655011
    Jessup,M.J.,Newell,D.L.,Cottle,J.M.,et al.,2008.OrogenParallel Extension and Exhumation Enhanced by Denudation in the Trans-Himalayan Arun River Gorge,Ama Drime Massif,Tibet-Nepal.Geology,36(7):587-590.https://doi.org/10.1130/G24722A.1
    Ji,J.Q.,Zhong,D.L.,Song,B.,et al.,2004.Metamorphism,Geochemistry and U-Pb Zircon SHRIMP Geochronology of the High-Pressure Granulites in the Central Greater Himalayas.Acta Petrologica Sinica,20(5):1283-1300(in Chinese with English abstract).
    Kali,E.,Leloup,P.H.,Arnaud,N.,et al.,2010.Exhumation History of the Deepest Central Himalayan Rocks,Ama Drime Range:Key Pressure-Temperature-DeformationTime Constraints on Orogenic Models.Tectonics,29(2):TC2014.https://doi.org/10.1029/2009TC002551
    Kellet,D.A.,Cottle,J.M.,Smit,M.,2014.Eocene Deep Crust at Ama Drime,Tibet:Early Evolution of the Himalayan Orogen.Lithosphere,6(4):220-229.https://doi.org/10.1130/L350.1
    Kohn,M.J.,2014.Himalayan Metamorphism and Its Tectonic Implications.Annual Review of Earth and Planetary Sciences,42(1):381-419.https://doi.org/10.1146/annurev-earth-060313-055005
    Lal,R.K.,1993.Internally Consistent Recalibrations of Mineral Equilibria for Geothermobarometry Involving Garnet-Orthopyroxene-Plagioclase-Quartz Assemblages and Their Application to the South Indian Granulites.Journal of Metamorphic Geology,11(6):855-866.https://doi.org/10.1111/j.1525-1314.1993.tb00195.x
    Langille,J.M.,Jessup,M.J.,Cottle,J.M.,et al.,2010.Kinematic Evolution of the Ama Drime Detachment:Insights into Orogen-Parallel Extension and Exhumation of the Ama Drime Massif,Tibet-Nepal.Journal of Structural Geology,32(7):900-919.https://doi.org/10.1016/j.jsg.2010.04.005
    Le Fort,P.,1975.Himalayas:The Collided Range.Present Knowledge of the Continental Arc.American Journal of Science,275:1-44.
    Leake,B.E.,Woolley,A.R.,Brich,W.D.,et al.,2004.Nomenclature of Amphiboles:Additions and Revisions to the International Mineralogical Association's Amphibole Nomenclature.Mineralogical Magazine,68(1):209-215.https://doi.org/10.1180/0026461046810182
    Leloup,P.H.,Mahéo,G.,Arnaud,N.,et al.,2010.The South Tibet Detachment Shear Zone in the Dinggye Area:Time Constraints on Extrusion Models of the Himalayas.Earth and Planetary Science Letters,292(1-2):1-16.https://doi.org/10.1016/j.epsl.2009.12.035
    Li,D.W.,Liao,Q.A.,Yuan,Y.M.,et al.,2002.Discovery and Significance of Basic Granulites in the Complexes in the Middle Himalaya.Earth Science,27(1):80,96(in Chinese).
    Li,D.W.,Liao,Q.A.,Yuan,Y.M.,et al.,2003.U-Pb Zircon Ages of Rimana Granulites in the Middle Himalaya.Chinese Science Bulletin,48(20):2176-2179(in Chinese).
    Liao,Q.A.,Li,D.W.,Yi,S.H.,et al.,2003.Petrologic and Geologic Significance of Garnet Pyroxenite and Mafic Granulites from High Himalayan Region,Tibet.Earth Science,28(6):627-633(in Chinese with English abstract).
    Liu,D.M.,Li,D.W.,Yang,W.R.,2003.Study of Mylonite and Deformation of Ductile Shear Zone,Dingjie Area.Earth Science Frontiers,10(2):479-486(in Chinese with English abstract).
    Liu,Q.,Deng,Y.B.,Xiang,S.Y.,et al.,2017.Early Ordovician Tectono-Thermal Event in Zhongba Terrane and Its Geological Significance.Earth Science,42(6):881-890(in Chinese with English abstract).https://doi.org/10.3799/dqkx.2017.076
    Liu,S.W.,Zhang,J.J.,Shu,G.M.,et al.,2005.Mineral Chemistry,P-T-t Paths and Exhumation Processes of Mafic Granulites in Dinggye,Southern Tibet.Science in China(Series D),35(9):810-820(in Chinese).
    Liu,X.H.,Ju,Y.T.,Wei,L.J.,et al.,2009.An Alternative Tectonic Model for the Yarlung Zangbo Suture Zone.Science in China(Series D),39(4):448-463(in Chinese).
    Liu,Y.,Zhong,D.L.,1998.Petrology of High-Pressure Granulites from Eastern Himalaya:Implications to Tectonic Significance.Scientia Geologica Sinica,33(3):267-281(in Chinese with English abstract).
    Lombardo,B.,Rolfo,F.,2000.Two Contrasting Eclogite Types in the Himalayas:Implications for the Himalayan Orogeny.Journal of Geodynamics,30(1-2):37-60.https://doi.org/10.1016/S0264-3707(99)00026-5
    Lombardo,B.,Rolfo.F.,Compagnoni,R.,2000.Glaucophane and Barroisite Eclogites from the Upper KaghanNappe:Implications for the Metamorphic History of the NWHimalaya.Geological Society,London,Special Publications,170(1):411-430.https://doi.org/10.1144/GSL.SP.2000.170.01.22
    Mottram,C.M.,Parrish,R.R.,Regis,D.,et al.,2015.Using U-Th-Pb Petrochronology to Determine Rates of Ductile Thrusting:Time Windows into the Main Central Thrust,Sikkim Himalaya.Tectonics,34(7):1355-1374.https://doi.org/10.1002/2014TC003743
    Mukherjee,B.,Sachan,H.K.,Ahmad,T.,2005.A New Occurrence of Microdiamond from Indus Suture Zone,Himalata:A Possible Origin.In:Memoire,H.S.,ed.,Special Extended Abstract Volume.Géologie Alpine,44:136.
    M9ller,C.,1998.Decompressed Eclogites in the Sveconorwegian(-Grenvillian)Orogen of SW Sweden:Petrology and Tectonic Implications.Journal of Metamorphic Geology,16(5):641-656.https://doi.org/10.1111/j.1525-1314.1998.00160.x
    O'Brien,P.J.,Zotov,N.,Law,R.,et al.,2001.Coesite in Himalayan Eclogite and Implications for Models of India-Asia Collision.Geology,29(5):435-438.https://doi.org/10.1130/0091-7613(2001)029<0435:CIHEAI>2.0.CO;2
    Pan,Y.,Kidd,W.S.F.,1992.Nyainqentanglha Shear Zone:A Late Miocene Extensional Detachment in the Southern Tibetan Plateau.Geology,20(9):775-778.https://doi.org/10.1130/0091-7613(1992)020<0775:NSZALM>2.3.CO;2
    Pitra,P.,Ballèvre,M.,Ruffet,G.,2010.Inverted Metamorphic Field Gradient towards a Variscan Suture Zone(Champtoceaux Complex,Armorican Massif,France).Journal of Metamorphic Geology,28(2):183-208.https://doi.org/10.1111/j.1525-1314.2009.00862.x
    Powell,R.,Holland,T.,Worley,B.,1998.Calculating Phase Diagrams Involving Solid Solutions via Non-Linear Equations,with Examples Using THERMOCALC.Journal of Metamorphic Geology,16(4):577-588.https://doi.org/10.1111/j.1525-1314.1998.00157.x
    Ravna,K.,2000.The Garnet-Clinopyroxene Fe2+-Mg Geothermometer:An Updated Calibration.Journal of Metamorphic Geology,18(2):211-219.https://doi.org/10.1046/j.1525-1314.2000.00247.x
    Rolfo,F.,McClelland,W.,Lombardo,B.,2005.Geochronological Constraints on the Age of the Eclogite-Facies Metamorphism in the Eastern Himalaya.In:Memoire,H.S.,ed.,Special Extended Abstract Volume.Géologie Alpine,44:170.
    Wang,Y.H.,Zhang,L.F.,Zhang,J.J.,et al.,2017.The Youngest Eclogite in Central Himalaya:P-T Path,U-Pb Zircon Age and Its Tectonic Implication.Gondwana Research,41:188-206.https://doi.org/10.1016/j.gr.2015.10.013
    Wei,C.J.,2011.Approaches and Advancement of the Study of Metamorphic P-T-t Paths.Earth Science Frontiers,18(2):1-16(in Chinese with English abstract).
    White,R.W.,Powell,R.,Clarke,G.L.,2002.The Interpretation of Reaction Textures in Fe-Rich Metapelitic Granulites of the Musgrave Block,Central Australia:Constraints from Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.Journal of Metamorphic Geology,20(1):41-55.https://doi.org/10.1046/j.0263-4929.2001.00349.x
    White,R.W.,Powell,R.,Holland,T.J.B.,2007.Progress Relating to Calculation of Partial Melting Equilibria for Metapelites.Journal of Metamorphic Geology,25(5):511-527.https://doi.org/10.1111/j.1525-1314.2007.00711.x
    White,R.W.,Powell,R.,Holland,T.J.B.,et al.,2000.The Effect of TiO2and Fe2O3 on Metapelitic Assemblages at Greenschist and Amphibolite Facies Conditions:Mineral Equilibria Calculations in the System K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3.Journal of Metamorphic Geology,18(5):497-511.
    Xiao,W.J.,Ao,S.J.,Yang,L.,et al.,2017.Anatomy of Composition and Nature of Plate Convergence:Insights for Alternative Thoughts for Terminal India-Eurasia Collision.Science in China(Series D),47(6):631-656(in Chinese).
    Xu,Z.Q.,Wang,Q.,Pêcher,A.,et al.,2013.Orogen-Parallel Ductile Extension and Extrusion of the Greater Himalaya in the Late Oligocene and Miocene.Tectonics,32(2):191-215.https://doi.org/10.1002/tect.20021
    Yin,A.,2006.Cenozoic Tectonic Evolution of the Himalayan Orogen as Constrained by along-Strike Variation of Structural Geometry,Exhumation History,and Foreland Sedimentation.Earth-Science Reviews,76(1):1-131.https://doi.org/10.1016/j.earscirev.2006.08.005
    Yu,J.J.,Zeng,L.S.,Liu,J.,et al.,2011.Early Miocene Leucogranites in Dinggye Area,Southern Tibet:Formation Mechanism and Tectonic Implications.Acta Petrologica Sinica,27(7):1961-1972(in Chinese with English abstract).
    Zhang,J.J.,Guo,L.,Ding,L.,2002.Structural Characteristics of Middle and Southern Xainza-Dinggye Normal Fault System and Its Relationship to Southern Tibetan Detachment System.Chinese Science Bulletin,47(10):738-743(in Chinese).
    Zhang,Z.M.,Dong,X.,He,Z.Y.,et al.,2013.Indian and Asian Continental Collision Viewed from HP and UHP Metamorphism of the Himalaya Orogen.Acta Petrologica Sinica,29(5):1713-1726(in Chinese with English abstract).
    Zhang,Z.M.,Zhao,G.,Santosh,M.,et al.,2010.Two Stages of Granulite Facies Metamorphism in the Eastern Himalayan Syntaxis,South Tibet:Petrology,Zircon Geochronology and Implications for the Subduction of NeoTethys and the Indian Continent beneath Asia.Journal of Metamorphic Geology,28(7):719-733.https://doi.org/10.1111/j.1525-1314.2010.00885.x
    Zhang,Z.M.,Zheng,L.L.,Wang,J.L.,et al.,2007.Garnet Pyroxenite in the Namjagbarwa Group-Complex in the Eastern Himalayan Tectonic Syntaxis,Tibet,China:Evidence for Subduction of the Indian Continent beneath the Eurasian Plate at 80-100km Depth.Geological Bulletin of China,26(1):1-12(in Chinese with English abstract).
    Zhao,G.,Cawood,P.A.,Wilde,S.A.,et al.,2001.High-Pressure Granulites(Retrograded Eclogites)from the Hengshan Complex,North China Craton:Petrology and Tectonic Implications.Journal of Petrology,42(6):1141-1170.https://doi.org/10.1093/petrology/42.6.1141
    Zhou,X.,Tong,L.X.,Liu,X.H.,et al.,2014.Metamorphism Evolution of Mafic Granulite from the Larsemann Hills,East Antarctica.Acta Petrologica Sinica,30(6):1731-1747(in Chinese with English abstract).
    陈相艳,仝来喜,张传林,等,2015.浙江龙游石榴石角闪岩(退变榴辉岩):华夏加里东期碰撞造山事件的新证据.科学通报,60(13):1207-1217.
    丁林,钟大赉,1999.西藏南迦巴瓦峰地区高压麻粒岩相变质作用特征及其构造地质意义.中国科学(D辑),29(5):385-397.
    季建清,钟大赉,宋彪,等,2004.喜马拉雅中段高压麻粒岩变质作用、地球化学与年代学.岩石学报,20(5):1283-1300.
    李德威,廖群安,袁晏明,等,2002.喜马拉雅造山带中段核部杂岩中基性麻粒岩的发现及构造意义.地球科学,27(1):80,96.
    李德威,廖群安,袁晏明,等,2003.喜马拉雅造山带中段日玛那麻粒岩锆石U-Pb年代学.科学通报,48(20):2176-2179.
    廖群安,李德威,易顺华,等,2003.西藏定结高喜马拉雅石榴辉石岩-镁铁质麻粒岩的岩石特征及其地质意义.地球科学,28(6):627-633.
    刘德民,李德威,杨巍然,2003.定结地区韧性剪切带变形特征与糜棱岩研究.地学前缘,10(2):479-486.
    刘强,邓玉彪,向树元,等,2017.藏南仲巴地体早奥陶世构造-热事件及其地质意义.地球科学,42(6):881-890.
    刘树文,张进江,舒桂明,等,2005.藏南定结铁镁质麻粒岩矿物化学、PTt轨迹和折返过程.中国科学(D辑),35(9):810-820.
    刘小汉,琚宜太,韦利杰,等,2009.再论雅鲁藏布江缝合带构造模型.中国科学(D辑),39(4):448-463.
    刘焰,钟大赉,1998.东喜马拉雅地区高压麻粒岩石学研究及构造意义.地质科学,33(3):267-281.
    魏春景,2011.变质作用P-T-t轨迹的研究方法与进展.地学前缘,18(2):1-16.
    肖文交,敖松坚,杨磊,等,2017.喜马拉雅汇聚带结构-属性解剖及印度-欧亚大陆最终拼贴格局.中国科学(D辑),47(6):631-656.
    于俊杰,曾令森,刘静,等,2011.藏南定结地区早中新世淡色花岗岩的形成机制及其构造动力学意义.岩石学报,27(7):1961-1972.
    张进江,郭磊,丁林,2002.申扎-定结正断层体系中,南段构造特征及其与藏南拆离系的关系.科学通报,47(10):738-743.
    张泽明,董昕,贺振宇,等,2013.喜马拉雅造山带的高压超高压变质作用与印度-亚洲大陆碰撞.岩石学报,29(5):1713-1726.
    张泽明,郑来林,王金丽,等,2007.东喜马拉雅构造结南迦巴瓦岩群中的石榴辉石岩-印度大陆向欧亚板块之下俯冲至80~100km深度的证据.地质通报,26(1):1-12.
    周信,仝来喜,刘小汉,等,2014.东南极拉斯曼丘陵镁铁质麻粒岩的变质作用演化.岩石学报,30(6):1731-1747.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700