用户名: 密码: 验证码:
棉铃虫生物钟基因HeDbt的克隆和表达模式分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cloning and expression profiling of circadian clock gene HeDbt in Helicoverpa armigera (Lepidoptera: Noctuidae)
  • 作者:闫硕 ; 刘彦君 ; 张馨方 ; 朱家林 ; 李贞 ; 刘孝明 ; 张青文 ; 刘小侠
  • 英文作者:YAN Shuo;LIU Yan-Jun;ZHANG Xin-Fang;ZHU Jia-Lin;LI Zhen;LIU Xiao-Ming;ZHANG Qing-Wen;LIU Xiao-Xia;College of Plant Protection, China Agricultural University;Changli Institute of Pomology, Hebei Academy of Agriculture and Forestry Sciences;Beijing Customs District P.R.China;
  • 关键词:棉铃虫 ; 生物钟基因 ; 复眼 ; 光感受器 ; 外周组织 ; 昼夜节律
  • 英文关键词:Helicoverpa armigera;;circadian clock gene;;compound eyes;;photoreceptor;;peripheral tissue;;circadian rhythm
  • 中文刊名:KCXB
  • 英文刊名:Acta Entomologica Sinica
  • 机构:中国农业大学植物保护学院;河北省农林科学院昌黎果树研究所;中华人民共和国北京海关;
  • 出版日期:2018-12-20
  • 出版单位:昆虫学报
  • 年:2018
  • 期:v.61
  • 基金:棉花病虫害绿色防控关键技术研究与示范(2017YFDZ01902);; 国家自然科学基金项目(31572018)
  • 语种:中文;
  • 页:KCXB201812005
  • 页数:11
  • CN:12
  • ISSN:11-1832/Q
  • 分类号:33-43
摘要
【目的】克隆并分析棉铃虫Helicoverpa armigera生物钟基因Double-time(Dbt),明确该基因的昼夜表达模式,探讨其表达水平的影响因子,为研究夜蛾科昆虫复眼中生物钟基因的作用机制奠定基础,为理解外周组织中生物钟基因功能提供参考。【方法】采用RT-PCR和RACE技术从2日龄棉铃虫雌成虫复眼中克隆生物钟基因Dbt,并利用在线网站和软件进行生物信息学分析。采用qPCR技术检测棉铃虫雌、雄成虫不同组织(头、脑、复眼、触角、胸、腹、足和翅)中Dbt的表达水平;检测光周期14L∶10D和持续黑暗(DD)下雌、雄成虫头和复眼中Dbt的昼夜表达模式;在暗期用棉铃虫敏感波段光(UV、蓝光和绿光)照射2日龄成虫6 h,检测复眼中Dbt表达水平的变化;在暗期进行雌、雄成虫交配,检测交配结束及3 h后复眼中Dbt表达水平的变化。【结果】成功克隆到棉铃虫生物钟基因Dbt的cDNA序列,命名为HeDbt(GenBank登录号:KM233159),开放阅读框长1 026 bp,编码314个氨基酸组成的多肽。HeDbt理论推测分子量为39.79 kD,等电点(pI)为9.55,不具有跨膜拓扑结构,包含典型的昆虫DBT蛋白保守区域,其与甜菜夜蛾Spodoptera exigua和柞蚕Antheraea pernyi DBT的同源性较高,氨基酸序列一致性分别为99%和97%。qPCR结果表明,HeDbt在成虫各组织中均有表达,在头、脑和复眼中表达水平较低,在胸和腹中表达水平较高;在14L∶10D和DD下,头和复眼中HeDbt未呈现明显的昼夜表达节律。暗期光照和交配后,复眼中HeDbt的表达均显著下调,但雌、雄成虫间HeDbt表达水平整体相似。【结论】成功克隆得到棉铃虫生物钟基因HeDbt,其在棉铃虫成虫头和复眼中表达水平较低,且不具有昼夜规律性,但复眼中Dbt的表达受到光照和交配的影响。本研究为进一步探索夜蛾外周组织生物钟基因功能奠定了基础。
        【Aim】 The aim of this study is to clone and analyze circadian clock gene Double-time(Dbt) in Helicoverpa armigera, and to examine the diurnal expression pattern of Dbt mRNA levels and its determinants, so as to provide a theoretical basis for studying the mechanisms of action of the circadian clock genes in the compound eyes and understanding the function of circadian clock genes in peripheral tissues in noctuid moths. 【Methods】 Dbt was cloned from compound eyes of 2-day-old female adults of H. armigera by RT-PCR and RACE, and its deduced amino acid sequence was analyzed using online sites and software. The expression levels of Dbt among different tissues(head, brain, compound eyes, antennae, thorax, abdomen, leg and wing) of female and male adults were determined and compared by qPCR. The diurnal changes of Dbt mRNA levels in compound eyes and head were measured under a photoperiod of 14L∶10D and constant darkness(DD). The 2-day-old adults were irradiated by sensitive wavelength of UV, blue and green lights, respectively, for 6 h from the beginning of the scotophase, and the changes in the expression levels of Dbt in compound eyes were determined after light exposure. Female and male adults were paired for mating during scotophase, and the changes in the expression levels of Dbt in compound eyes were determined at 0 h and 3 h after copulation, respectively. 【Results】 The full-length cDNA of Dbt gene was cloned from the compound eyes of H. armigera and designated as HeDbt(GenBank accession number: KM233159). It has a 1 026 bp open reading frame encoding a predicted protein of 314 amino acids, with a molecular mass of 39.79 kD and a calculated isoelectric point(pI) of 9.55. Its deduced amino acid sequence has no transmembrane topologies, and shares several typical conserved domains of insect DBT. HeDBT shows a high homology with DBT proteins from Spodoptera exigua(99% amino acid sequence identity) and Antheraea pernyi(97% amino acid sequence identity). qPCR results illustrated that HeDbt was expressed in all the tested adult tissues, and had low expression levels in the head, brain and compound eyes and high expression levels in thorax and abdomen. The expression of HeDbt showed no obvious circadian rhythm in both the head and compound eyes under 14L∶10D and DD. The expression of HeDbt was down-regulated in compound eyes after light exposure and copulation, but with similar HeDbt mRNA levels between female and male adults. 【Conclusion】 A circadian clock gene HeDbt was successfully cloned from H. armigera. HeDbt had low mRNA levels in the head and compound eyes of H. armigera adults. Its expression in the head and compound eyes showed no obvious circadian rythym, but was influenced by light exposure and copulation of adults. Our study provides a theoretical basis for further studying the function of circadian clock genes in peripheral tissues in noctuid moths.
引文
Bairoch A, Bucher P, Hofmann K, 1997. The PROSITE database, its status in 1997. Nucleic Acids Res., 25(1): 217-221.
    Barberà M, Collantes-Alegre JM, Martínez-Torres D, 2017. Characterisation, analysis of expression and localization of circadian clock genes from the perspective of photoperiodism in the aphid Acyrthosiphon pisum. Insect Biochem. Molec. Biol., 83: 54-67.
    Boothroyd CE, Wijnen H, Naef F, Saez L, Young MW, 2007. Integration of light and temperature in the regulation of circadian gene expression in Drosophila. PLoS Genet., 3(4): e54.
    Burks CS, Brandl DG, Higbee BS, 2011. Effect of natural and artificial photoperiods and fluctuating temperature on age of first mating and mating frequency in the navel orangeworm, Amyelois transitella. J. Insect Sci., 11(1): 48.
    Cashmore AR, 2003. Cryptochromes: enabling plants and animals to determine circadian time. Cell, 114(5): 537-543.
    Ceriani MF, Darlington TK, Stakins D, Más P, Petti AA, Weitz CJ, Kay S, 1999. Light-dependent sequestration of TIMELESS by CRYPTOCHROME. Science, 285(5427): 553-556.
    Chang DC, WcWatters HG, Williams JA, Gotter AL, Levine JD, Reppert SM, 2003. Constructing a feedback loop with circadian clock molecules from the silkmoth, Antheraea pernyi. J. Biol. Chem., 278(40): 38149-38158.
    Chong NW, Chaurasia SS, Haque R, Klein DC, Iuvone PM, 2003. Temporal-spatial characterization of chicken clock genes: circadian expression in retina, pineal gland, peripheral tissues. J. Neurochem., 85(4): 851-860.
    Combet C, Blanchet C, Geourjon C, Deléage G, 2000. NPS@: Network Protein Sequence Analysis. Trends Biochem. Sci., 25(3): 147-150.
    Cyran SA, Yiannoulos G, Buchsbaum AM, Saez L, Young MW, Blau J, 2005. The DOUBLE-TIME protein kinase regulates the subcellular localization of the Drosophila clock protein PERIOD. J. Neurosci., 25(22): 5430-5437.
    Delisle J, McNeil JN, 1987. Calling behaviour and pheromone titre of the true armyworm Pseudaletia unipuncta (Haw.) (Lepidoptera: Noctuidae) under different temperature and photoperiodic conditions. J. Insect Physiol., 33(5): 315-324.
    Fan JY, Muskus MJ, Price JL, 2007. Entrainment of the Drosophila circadian clock: more heat than light. Sci. Stke, 413: pe65.
    Gegear RJ, Casselman A, Waddell S, Reppert SM, 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature, 454(21): 1014-1018.
    Kamimura M, Tatsuki S, 1994. Effects of photoperiodic changes on calling behavior and pheromone production in the oriental tobacco budworm moth, Helicoverpa assulta (Lepidoptera: Noctuidae). J. Insect Physiol., 40(8): 731-734.
    Kawazu K, Adati T, Tatsuki S, 2011. The effect of photoregime on the calling behavior of the rice leaf folder moth, Cnaphalocrocis medinalis (Lepidoptera: Crambidae). Jarq-Jpn. Agr. Res. Q., 45(2): 197-202.
    Kloss B, Price JL, Saez L, Blau J, Rothenfluh A, Wesley CS, Young MW, 1998. The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε. Cell, 94(1): 97-107.
    Kontogiannatos D, Gkouvitsas T, Kourti A, 2017. The expression patterns of the clock genes period and timeless are affected by photoperiod in the Mediterranean corn stalk borer, Sesamia nonagrioides. Arch. Insect Biochem., 94(1): e21366.
    Li HT, Yan S, Li Z, Zhang QW, Liu XX, 2015. Dim light during scotophase enhances sexual behavior of the oriental tobacco budworm Helicoverpa assulta (Lepidoptera: Noctuidae). Fla. Entomol., 98(2): 690-696.
    Lin C, Todo T, 2005. The cryptochromes. Genome Biol., 6(5): 220.
    Liu S, Cai YN, Sothern RB, Guan YQ, Chan P, 2007. Chronobiological analysis of circadian patterns in transcription of seven key clock genes in six peripheral tissues in mice. Chronobiol. Int., 24(5): 793-820.
    Liu XM, Zhang SD, Mamuti S, Zou C, Li Z, Zhang QW, Liu XX, 2016. The effect of photoperiod and temperature on the diurnal expression of the circadian clock gene cwo in larvae of cotton bollworm, Helicoverpa armigera (Hübner). Chin. J. Appl. Entomol., 53(5): 942-952. [刘孝明, 张松斗, 马木提·赛丽蔓, 邹驰, 李贞, 张青文, 刘小侠, 2016. 光周期和温度对生物钟基因cwo在棉铃虫幼虫节律表达的影响. 应用昆虫学报, 53(5): 942-952]
    Livak KJ, Schmittgen TD, 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods, 25(4): 402-408.
    Lu YH, Zhao YY, Zhang FC, Zheng XS, Zhu PY, Lu ZX, 2016. Cloning and spatiotemporal and temperature-induced expression profiling of diapause bioclock protein TIME-EA4 gene in the rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae). Acta Entomol. Sin., 59(4): 392-401. [鲁艳辉, 赵燕燕, 张发成, 郑许松, 朱平阳, 吕仲贤, 2016. 二化螟滞育生物钟蛋白TIME-EA4基因的克隆及时空和温度诱导表达分析. 昆虫学报, 59(4): 392-401]
    Merlin C, Fran?ois MC, Queguiner I, Ma?bèche-Coisnè M, Jacquin-Joly E, 2006. Evidence for a putative antennal clock in Mamestra brassicae: molecular cloning and characterization of two clock genes-period and cryptochrome - in antennae. Insect Mol. Biol., 15(2): 137-145.
    Merlin C. Lucas P, Rochat D, Fran?ois MC, Ma?bèche-Coisnè M, Jacquin-Joly E, 2007. An antennal circadian clock and circadian rhythms in peripheral pheromone reception in the moth Spodoptera littoralis. J. Biol. Rhythm., 22(6): 502-514.
    Ni H, Yan S, Liu XX, Zhang QW, 2011. Cryptochromes mRNA expression under mating and black light treatment on Helicoverpa armigera. Plant Dis. Pests, 2(3): 20-23, 30.
    Price JL, Blau J, Rothenfluh A, Abodeely M, Kloss B, Young MW, 1998. Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell, 94(1): 83-95.
    Raina AK, 1993. Neuroendocrine control of sex pheromone biosynthesis in Lepidoptera. Annu. Rev. Entomol., 38: 329-349.
    Raina AK, Klun JA, 1984. Brain factor control of sex pheromone production in the female corn earworm moth. Science, 225(4661): 531-533.
    Ren S, Wei HM, Hao YJ, Chen B, 2016. Research progress in circadian clock genes in insects. Acta Entomol. Sin., 59(3): 353-364. [任爽, 魏慧敏, 郝友进, 陈斌, 2016. 昆虫钟基因研究进展. 昆虫学报, 59(3): 353-364]
    Rubin EB, Shemesh Y, Cohen M, Elgavish S, Robertson HM, Bloch G, 2006. Molecular and phylogenetic analyses reveal mammalian-like clockwork in the honey bee (Apis mellifera) and shed new light on the molecular evolution of the circadian clock. Genome Res., 16(11): 1352-1365.
    Sandrelli F, Costa R, Kyriacou CP, Rosato E, 2008. Comparative analysis of circadian clock genes in insects. Insect Mol. Biol., 17(5): 447-463.
    Schuckel J, Siwicki KK, Stengl M, 2007. Putative circadian pacemaker cells in the antennae of the hawkmoth Manuca sexta. Cell Tissue Res., 330(2): 271-278.
    Shirasu N, Shimohigashi Y, Tominaga Y, Shimohigashi M, 2003. Molecular cogs of the insect circadian clock. Zool. Sci., 20(8): 947-955.
    Singh D, Rani S, Kumar V, 2013. Daily expression of six clock genes in central and peripheral tissues of a night-migratory songbird: evidence for tissue-specific circadian timing. Chronobiol. Int., 30(10): 1208-1217.
    Suri V, Qian Z, Hall JC, Rosbash M, 1998. Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Neuron, 21(1): 225-234.
    Tanoue S, Nishioka T, 2001. A receptor-type guanylyl cyclase expression is regulated under circadian clock in peripheral tissues of the silk moth. Light-induced shifting of the expression rhythm and correlation with eclosion. J. Biol. Chem., 276(50): 46765-46769.
    Tomioka K, Matsumoto A, 2010. A comparative view of insect circadian clock systems. Cell. Mol. Life Sci., 67(9): 1397-1406.
    Uryu O, Karpova G, Tomioka K, 2013. The clock gene cycle plays an important role in the circadian clock of the cricket Gryllus bimaculatus. J. Insect Physiol., 59(7): 697-704.
    Wang WD, Shu MY, Zhang DY, Xu SQ, 2016. Bioinformatics analysis of circadian rhythm biological clock genes in Bombyx mori. Sichuan J. Zool., 35(2): 275-282. [王文栋, 束梅影, 张达艳, 徐世清, 2016. 家蚕昼夜节律生物钟基因的生物信息学分析. 四川动物, 35(2): 275-282]
    Wei GS, Zhang QW, Zhou MZ, Wu WG, 1999. Studies on the electroretinogram of the compound eyes of Helicoverpa armigera (Hübner) moth. Acta Biophy. Sin., 15(4): 682-688. [魏国树, 张青文, 周明牂, 吴卫国, 1999. 棉铃虫[Helicoverpa armigera (Hübner)]蛾复眼视网膜电位研究. 生物物理学报, 15(4): 682-688]
    Wu KJ, Gong PY, 1997. A new and practical artificial diet for the cotton bollworm. Entomol. Sin., 4(3): 277-282.
    Yan S, Li HT, Zhang J, Zhu JL, Zhang QW, Liu XX, 2013a. Sperm storage and sperm competition in the Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol., 106(2): 708-715.
    Yan S, Li HT, Zhu WL, Zhu JL, Zhang QW, Liu XX, 2014. Effects of light intensity on the sexual behavior of the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). Acta Entomol. Sin., 57(9): 1045-1050. [闫硕, 李慧婷, 朱威龙, 朱家林, 张青文, 刘小侠, 2014. 光强度对棉铃虫交配行为的影响. 昆虫学报, 57(9): 1045-1050]
    Yan S, Liu YJ, Zhang XF, Qin M, Liu H, Zhu JL, Li Z, Zhang QW, Liu XX, 2017. Daily expression of Clock gene in compound eye of Helicoverpa armigera. Sci. Agric. Sin., 50(19): 3733-3744. [闫硕, 刘彦君, 张馨方, 秦萌, 刘慧, 朱家林, 李贞, 张青文, 刘小侠, 2017. 棉铃虫复眼中Clock生物钟基因的昼夜表达模式. 中国农业科学, 50(19): 3733-3744]
    Yan S, Liu YJ, Zhu JL, Cui WN, Zhang XF, Yang YH, Liu XM, Zhang QW, Liu XX, 2017. Daily expression of two circadian clock genes in compound eyes of Helicoverpa armigera: evidence for peripheral tissue circadian timing. Insect Sci., doi: 10.1111/1744-7917.12541.
    Yan S, Ni H, Li HT, Zhang J, Liu XX, Zhang QW, 2013b. Molecular cloning, characterization, and mRNA expression of two cryptochrome genes in Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol., 106(1): 450-462.
    Yan S, Zhu JL, Zhu WL, Pan LL, Zhang QW, Liu XX, 2013. Molecular cloning, sequence analysis and expression pattern detection of α-tubulin gene from Helicoverpa armigera (Hübner). Sci. Agric. Sin., 46(9): 1808-1817. [闫硕, 朱家林, 朱威龙, 潘李隆, 张青文, 刘小侠, 2013. 棉铃虫α-微管蛋白基因的克隆、序列分析及表达模式检测. 中国农业科学, 46(9): 1808-1817]
    Yan S, Zhu JL, Zhu WL, Zhang XF, Li Z, Liu XX, Zhang QW, 2014. The expression of three opsin genes from the compound eye of Helicoverpa armigera (Lepidoptera: Noctuidae) is regulated by a circadian clock, light conditions and nutritional status. PLoS ONE, 9(10): e111683.
    Yu W, Zheng H, Price JL, Hardin PE, 2009. DOUBLETIME plays a noncatalytic role to mediate CLOCK phosphorylation and repress CLOCK-dependent transcription within the Drosophila circadian clock. Mol. Cell. Biol., 29(6): 1452-1458.
    Zhang DY, Liang H, Sima YH, Xu SQ, 2013. Effects of temperature and light rhythm on expression of clock genes cry1 and cry2 in Bombyx mori adult. Sci. Sericul., 39(3): 453-459. [张达燕, 梁辉, 司马杨虎, 徐世清, 2013. 温度与光照节律对家蚕成虫生物钟基因Cry1和Cry2表达的影响. 蚕业科学, 39(3): 453-459]
    Zhu H, Sauman I, Yuan Q, Casselman A, Emery-Le M, Emery P, Reppert SM, 2008. Cryptochromes define a novel circadian clock mechanism in monarch butterflies that may underlie sun compass navigation. PLoS Biol., 6(1): e4.
    Zhu H, Yuan Q, Froy O, Casselman A, Reppert SM, 2005. The two CRYs of the butterfly. Curr. Biol., 15(23): R953-R954.
    Zhu L, Liu W, Tan QQ, Lei CL, Wang XP, 2017. Differential expression of circadian clock genes in two strains of beetles reveals candidates related to photoperiodic induction of summer diapause. Gene, 603: 9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700