用户名: 密码: 验证码:
EDDS对Cd胁迫下三叶鬼针草生长和抗氧化酶系统及Cd积累的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of EDDS on growth, antioxidant enzyme, and Cd accumulation of Bidens pilosa L. seedlings under Cd stress
  • 作者:杨波 ; 陈银萍 ; 柯昀琪 ; 闫志强 ; 余沛东 ; 师小平
  • 英文作者:YANG Bo;CHEN Yin-ping;KE Yun-qi;YAN Zhi-qiang;YU Pei-dong;SHI Xiao-ping;School of Environmental and Municipal Engineering, Lanzhou Jiaotong University;
  • 关键词:EDDS ; Cd胁迫 ; 三叶鬼针草 ; 生长 ; 抗氧化酶 ; Cd积累
  • 英文关键词:EDDS;;Cd stress;;Bidens pilosa L.;;growth;;antioxidant enzyme;;Cd accumulation
  • 中文刊名:NHBH
  • 英文刊名:Journal of Agro-Environment Science
  • 机构:兰州交通大学环境与市政工程学院;
  • 出版日期:2018-05-20
  • 出版单位:农业环境科学学报
  • 年:2018
  • 期:v.37;No.273
  • 基金:国家自然科学基金项目(31560161,31260089,31640012)~~
  • 语种:中文;
  • 页:NHBH201805005
  • 页数:8
  • CN:05
  • ISSN:12-1347/S
  • 分类号:41-48
摘要
为探讨乙二胺二琥珀酸(EDDS)对镉(Cd)胁迫下三叶鬼针草(Bidens pilosa L.)生长和抗氧化酶系统及Cd积累的影响,采用盆栽实验,研究了40 mg·kg~(-1)Cd胁迫下,施加0(CK)、0.5、1.5、2.5 mmol·L~(-1)和5.0 mmol·L~(-1)EDDS后三叶鬼针草生长和抗氧化酶活性及Cd积累的变化。结果表明:施加0.5 mmol·L~(-1)和1.5 mmol·L~(-1)的EDDS利于三叶鬼针草幼苗的生长,株高、根长、地上部鲜干重和地下部鲜干重均显著增加;施加0.5、1.5 mmol·L~(-1)和2.5 mmol·L~(-1)EDDS使地下部(根)和地上部(茎和叶混合)组织中Cd含量均显著大于CK,且在1.5 mmol·L~(-1)时Cd积累量达到最大(分别为31.954 mg·kg~(-1)和109.454 mg·kg~(-1)),富集系数和转运系数也达到最大(分别为3.521和3.426);随施加EDDS浓度的升高,植物地下部和地上部组织中过氧化氢酶(CAT)、抗坏血酸过氧化物酶(APX)、谷胱甘肽还原酶(GR)、过氧化物酶(POD)、超氧化物歧化酶(SOD)活性呈现先增强后降低或持续增强的趋势,说明抗氧化酶系统被启动,以清除胁迫过程中积累的活性氧(ROS),缓解胁迫对植物造成的膜脂过氧化损伤。因此,施加适宜浓度的EDDS可促进三叶鬼针草幼苗的生长,增加三叶鬼针草对Cd的吸收和富集能力,有利于Cd污染土壤的修复,综合考虑螯合剂的成本以及对土壤造成的二次污染,宜选用EDDS的浓度为1.5 mmol·L~(-1)。
        A pot experiment was conducted to study the effects of adding 0(CK), 0.5, 1.5, 2.5 mmol·L~(-1), and 5.0 mmol·L~(-1) ethylenediamine disuccinic acid(EDDS) on growth, antioxidant enzyme activities, and Cd accumulation in Bidens pilosa seedlings under 40 mg·kg~(-1) Cd stress. The results showed that the dry and fresh weight, plant height, and root length of the seedlings were promoted significantly by treatments with 0.5 mmol·L~(-1) and 1.5 mmol·L~(-1) EDDS. The belowground(roots)and aboveground(stems and leaves)parts had significant higher level of Cd accumulation in the 0.5, 1.5 mmol·L~(-1), and 2.5 mmol·L~(-1) EDDS treatments than that in the CK, but the concentration of 1.5 mmol·L~(-1) showed the best effect, with the maximum value of 31.954 mg·kg~(-1) and 109.454 mg·kg~(-1) in the belowground and aboveground parts, respectively. The highest bioaccumulation factor(3.521) and the highest translocation factor(3.426) were also observed in the 1.5 mmol·L~(-1) EDDS treatment. With increasing EDDS concentration, activity of catalase(CAT), ascorbate peroxidase(APX), glutathione reductase(GR), peroxidase(POD)and superoxide dismutase(SOD) in the belowground and aboveground parts of Bidens pilosa seedlings under Cd stress appeared to present an initial increasing trend, followed by a decrease or persistent increase. These findings indicated that the antioxidant enzyme system was activated to eliminate reactive oxygen species(ROS)and alleviate membrane lipid peroxidation damage induced by Cd stress. The present results suggested that an appropriate concentration of EDDS could promote the growth of seedlings under Cd stress and increase the capacity for absorption and accumulation of Cd, which is beneficial for the remediation of Cd-contaminated soil.Taking into account the cost of chelating agent and secondary soil pollution caused by the chelating agent, the appropriate concentration of EDDS was found to be 1.5 mmol·L~(-1).
引文
[1]环境保护部,国土资源部.全国土壤污染状况调查公报[J].中国环保产业,2014,1(5):10-11.Ministry of Environmental Protection,Ministry of Land and Resources.The soil pollution condition investigation communique[J].China Environmental Protection Industry,2014,1(5):10-11.
    [2]Nowack B,Schulin R,Robinson B H.Critical assessment of chelantenhanced metal phytoextraction[J].Environmental Science&Technology,2006,40(17):5225-5232.
    [3]Mitch M L.Phytoextraction of toxic metals:A review of biological mechanism[J].Journal of Environmental Quality,2002,31(1):109-120.
    [4]Meers E,Ruttens A,Hopgood M,et al.Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals[J].Chemosphere,2005,58(8):1011-1022.
    [5]Luo C L,Shen Z G,Lou L Q,et al.EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds[J].Environmental Pollution,2006,144(3):862-871.
    [6]白薇扬,赵清华,谭怀琴.非生物螯合剂EDTA与生物螯合剂EDDS联合施用提高植物提取土壤重金属效应的研究[J].重庆理工大学学报(自然科学),2013,27(8):47-53,61.BAI Wei-yang,ZHAO Qing-hua,TAN Huai-qin.Effects of EDTA,EDDS phytoextract artificially polluted soil with heavy metals[J].Journal of Chongqing University of Technology(Natural Science),2013,27(8):47-53,61.
    [7]Attinti R,Barrett K R,Datta R,et al.Ethylenediamine disuccinic acid(EDDS)enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field[J].Environmental Pollution,2017,225(6):524-533.
    [8]谌金吾,孙一铭,王凤英,等.三叶鬼针草毛状根的诱导及其对重金属Cd、Pb蓄积[J].环境科学学报,2015,35(5):1596-1602.CHEN Jin-wu,SUN Yi-ming,WANG Feng-ying,et al.Induction and accumulation of cadmium and lead by hairy root of Bidens pilosa[J].Acta Scientiae Circumstantiae,2015,35(5):1596-1602.
    [9]弓晓峰,欧丽,刘足根,等.氮磷钾和乙二胺四乙酸对镉污染三叶鬼针草的吸收特征研究[J].环境污染与防治,2011,33(2):1-6,11.GONG Xiao-feng,OU Li,LIU Zu-gen,et al.Effect of nutrient elements and EDTA on the cadmium bioaccumulation of Bidens pilosa[J].Environmental Pollution&Control,2011,33(2):1-6,11.
    [10]王芳,常盼盼,陈永平,等.外源NO对镉胁迫下玉米幼苗生长和生理特性的影响[J].草业学报,2013,22(2):178-186.WANG Fang,CHANG Pan-pan,CHEN Yong-ping,et al.Effect of exogenous nitric oxide on seedling growth and physiological characteristics of maize seedlings under cadmium stress[J].Acta Prataculturae Sinica,2013,22(2):178-186.
    [11]刘柿良,潘远智,杨容孑,等.外源一氧化氮对镉胁迫下长春花质膜过氧化、ATPase及矿质营养吸收的影响[J].植物营养与肥料学报,2014,20(2):445-458.LIU Shi-liang,PAN Yuan-zhi,YANG Rong-jie,et al.Effects of exogenous NO on mineral nutrition absorption,lipid peroxidation and ATPase of plasma membrane in Catharanthus roseus tissues under cadmium stress[J].Journal of Plant Nutrition and Fertilizer,2014,20(2):445-458.
    [12]陈银萍,蘧苗苗,苏向楠,等.外源一氧化氮对镉胁迫下紫花苜蓿幼苗活性氧代谢和镉积累的影响[J].农业环境科学学报,2015,34(12):2261-2271.CHEN Yin-ping,QU Miao-miao,SU Xiang-nan,et al.Effect of exogenous nitric oxide on active oxygen metabolism and cadmium accumulation in alfalfa seedlings under cadmium stress[J].Journal of AgroEnvironment Science,2015,34(12):2261-2271.
    [13]袁菊红.Se胁迫条件下EDDS对彩叶草生长和生理指标及Se含量的影响[J].植物资源与环境学报,2012,21(4):87-93.YUAN Ju-hong.Effects of EDDS on growth,physiological indexes and Se content of Coleus blumei under Se stress[J].Journal of Plant Resources and Environment,2012,21(4):87-93.
    [14]Epstein A L,Gussman C D,Blaylock M J,et al.EDTA and Pb-EDTA accumulation in Brassica juncea grown in Pb-amended soil[J].Plant and Soil,1999,208(1):87-94.
    [15]胡亚虎,魏树和,周启星,等.螯合剂在重金属污染土壤植物修复中的应用研究进展[J].农业环境科学学报,2010,29(11):2055-2063.HU Ya-hu,WEI Shu-he,ZHOU Qi-xing,et al.Application of chelator in phytoremediation of heavy metals contaminated soils:A review[J].Journal of Agro-Environment Science,2010,29(11):2055-2063.
    [16]R觟mkens P,Bouwman L,Japenga J,et al.Potentials and drawbacks of chelate-enhanced phytoremediation of soils[J].Environmental Pollution,2002,116(1):109-121.
    [17]Hseu Z Y,Jien S H,Wang S H,et al.Using EDDS and NTA for enhanced phytoextraction of Cd by water spinach[J].Journal of Environmental Management,2013,117(1):58-64.
    [18]刘金,殷宪强,孙慧敏,等.EDDS与EDTA强化苎麻修复镉铅污染土壤[J].农业环境科学学报,2015,34(7):1293-1300.LIU Jin,YIN Xian-qiang,SUN Hui-min,et al.EDTA and EDDS enhanced remediation of Cd and Pb contaminated soil by ramie(Boehmeria nivea)[J].Journal of Agro-Environment Science,2015,34(7):1293-1300.
    [19]熊国焕,潘义宏,何艳明,等.螯合剂对大叶井口边草Pb、Cd、As吸收性影响研究[J].土壤,2012,44(2):282-289.XIONG Gou-huan,PAN Yi-hong,HE Yan-ming,et al.Chelate assisted uptake of heavy metal of lead,cadmium and arsenic from soil with Pteris cretica var.nervosa[J].Soils,2012,44(2):282-289.
    [20]孙约兵,周启星,任丽萍.镉超富集植物球果蔊菜对镉-砷复合污染的反应及其吸收积累特征[J].环境科学,2007,28(6):1355-1360.SUN Yue-bing,ZHOU Qi-xing,REN Li-ping.Growth responses of Rorippa globosa and its accumulation characteristics of Cd and As under the Cd-As combined pollution[J].Environmental Science,2007,28(6):1355-1360.
    [21]拓朵朵.EDTA与EDDS强化苎麻修复汞镉复合污染土壤的研究[D].杨凌:西北农林科技大学,2016.TUO Duo-duo.Study on EDTA and EDDS strengthening ramie to restore Hg/Cd contamination soil[D].Yangling:Northwest Agriculture and Forestry University,2016.
    [22]陈立,王丹,龙婵,等.三种螯合剂对向日葵修复铀污染土壤的效应研究[J].中国农学通报,2017,33(11):81-88.CHEN Li,WANG Dan,LONG Chan,et al.Effect of three chelating agents on U polluted soil repairing by sunflower[J].Chinese Agricultural Science Bulletin,2017,33(11):81-88.
    [23]白雪.EDDS强化金盏菊修复重金属污染土壤及环境风险分析[D].重庆:西南大学,2014.BAI Xue.Study on EDDS strengthening Calendula officinals to restore heavy metals soils and environmental assessment[D].Chongqing:Southwest University,2014.
    [24]Li Y,Luo C L,Liu Y,et al.Residual effects of EDDS leachates on plants during EDDS-assisted phytoremediation of copper contaminated soil[J].Science of the Total Environment,2013,444(1):263-270.
    [25]Brooks R R.Plants that hyperaccumulate heavy metals:Their role in phytoremediation,microbiology,archaeology,mineral exploration and phytomining[M].Oxford,UK:CAB International,1998.
    [26]Rosenbaugh E G,Manickam D S,Batrakova E V,et al.Neuronal uptake and subcellular localization of functional nanoformulated copper/zinc superoxide dismutase(SOD nano)[J].The Faseb Journal,2012,26:893.
    [27]Noctor G,Foyer C H.Ascorbate and glutathione:Keeping active oxygen under control[J].Annual Review of Plant Biology,1998,49(1):249-279.
    [28]王松华,张华,何庆元.铜胁迫对紫花苜蓿幼苗叶片抗氧化系统的影响[J].应用生态学报,2011,22(9):2285-2290.WANG Song-hua,ZHANG Hua,HE Qing-yuan.Effects of copper stress on Medicago sativa seedlings leaf antioxidative system[J].Chinese Journal of Applied Ecology,2011,22(9):2285-2290.
    [29]胡拥军,王海娟,王宏镔,等.砷胁迫下不同砷富集能力植物内源生长素与抗氧化酶的关系[J].生态学报,2015,35(10):3214-3224.HU Yong-jun,WANG Hai-juan,WANG Hong-bin,et al.The relationship between endogenous auxin and antioxidative enzymes in two plants with different arsenic-accumulative ability under arsenic stress[J].Acta Ecologica Sinica,2015,35(10):3214-3224.
    [30]江玲,杨芸,徐卫红,等.黑麦草-丛枝菌根对不同番茄品种抗氧化酶活性、镉积累及化学形态的影响[J].环境科学,2014,35(6):2349-2357.JIANG Ling,YANG Yun,XU Wei-hong,et al.Effects of ryegrass and arbuscular mycorrhiza on activities of antioxidant enzymes,accumulation and chemical forms of cadmium in different varieties of tomato[J].Environmental Science,2014,35(6):2349-2357.
    [31]郭慧媛,马元丹,王丹,等.模拟酸雨对毛竹叶片抗氧化酶活性及释放绿叶挥发物的影响[J].植物生态学报,2014,38(8):896-903.GUO Hui-yuan,MA Yuan-dan,WANG Dan,et al.Effects of simulated acid rain on the activity of antioxidant enzyme and the emission of induced green leaf volatiles in Phyllostachys pubescens[J].Chinese Journal of Plant Ecology,2014,38(8):896-903.
    [32]孙约兵,周启星,王林,等.三叶鬼针草幼苗对镉污染的耐性及其吸收积累特征研究[J].环境科学,2009,30(10):3028-3035.SUN Yue-bing,ZHOU Qi-xing,WANG Lin,et al.Characteristics of cadmium tolerance and bioaccumulation of Bidens pilosa seedlings[J].Environmental Science,2009,30(10):3028-3035.
    [33]罗艳,张世熔,徐小逊,等.可降解螯合剂对镉胁迫下籽粒苋根系形态及生理生化特征的影响[J].生态学报,2014,34(20):5774-5781.LUO Yan,ZHANG Shi-rong,XU Xiao-xun,et al.Effects of biodegradable chelants on the root morphology and physiological-biochemical characteristics of Amaranthus hybridus L.in cadmium contaminated soils[J].Acta Ecologica Sinica,2014,34(20):5774-5781.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700