用户名: 密码: 验证码:
基于便携式柱面镜多通池的二氧化碳高灵敏度探测研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Sensitivity Detection of Carbon Dioxide Based on Portable Cylindrical Multi-Pass Cell
  • 作者:陈家金 ; 王贵师 ; 刘锟 ; 谈图 ; 程刚 ; 田兴 ; 高晓明
  • 英文作者:CHEN Jia-jin;WANG Gui-shi;LIU Kun;TAN Tu;CHENG Gang;TIAN Xing;GAO Xiao-ming;Anhui Institute of Optics and Fine Mechanics,Chinese Academy of Sciences;University of Science and Technology of China;
  • 关键词:可调谐激光 ; 直接吸收光谱 ; 光学多通吸收池 ; 二氧化碳 ; 探测
  • 英文关键词:Tunable laser;;Direct absorption spectroscopy;;Optical multi-pass absorption cell;;Carbon dioxide;;Detection
  • 中文刊名:GUAN
  • 英文刊名:Spectroscopy and Spectral Analysis
  • 机构:中国科学院安徽光学精密机械研究所;中国科学技术大学;
  • 出版日期:2019-01-15
  • 出版单位:光谱学与光谱分析
  • 年:2019
  • 期:v.39
  • 基金:国家重点研发计划(2017YFC0209700,2016YFC0303900);; 国家自然科学基金项目(41730103,41575030)资助
  • 语种:中文;
  • 页:GUAN201901051
  • 页数:5
  • CN:01
  • ISSN:11-2200/O4
  • 分类号:298-302
摘要
二氧化碳作为大气中重要的温室气体,与气候变化和人类活动密切相关,因此对其浓度的探测具有重要意义。利用近红外可调谐二极管激光器结合自主设计的便携式小型化柱面镜光学多通吸收池,实现了二氧化碳气体的高灵敏探测。通过Matlab编写光线传输矩阵,优化设计了基于柱面镜的光学多通吸收池,相比于传统Herriott型多通池,具有腔镜利用面积高、在相同体积内可实现有效光程长等特点,在物理基长为15cm的情况下,实现了14m的有效光程。实验中使用中心波长为1.57μm的DFB二极管激光器,采用直接吸收光谱方法对CO_2气体进行了探测研究,并用Allan方差对系统性能进行了分析。结果表明,在平均时间为5s时,系统的探测灵敏度为33.1μL·L~(-1),平均时间为235s时,系统的探测灵敏度可达到5.3μL·L~(-1)。此外,利用该系统实现了大气中CO_2的探测,得到大气中的CO_2浓度为383.4μL·L~(-1)。基于柱面镜多通池搭建的可调谐激光吸收光谱(TDLAS)系统,结合了柱面镜多通池可在小体积内实现长光程和可调谐激光吸收光谱技术高灵敏度、高分辨率、快速响应的优点,大大减小了系统体积,提高了系统探测灵敏度,在气体探测领域有广泛的应用。
        Carbon dioxide is one of the most important greenhouse gases playing an important role in climate change and human activities,so the detection of carbon dioxide concentration has an important significance.Highly sensitive detection of carbon dioxide gas was achieved by using near infrared tunable diode laser absorption spectroscopy combined with self-designed portable miniaturized cylindrical mirror multi-pass absorption cell.The cylindrical mirrors multi-pass absorption cell was optimized and designed by using a light transmission matrix programmed with Matlab software,compared with traditional Herriott multipass cell,which has the advantages of high mirror utilization and longer optical path length in the same volume.An effective optical path length of 14 mwas achieved with 15 cm physical length.In present work,a DFB diode laser emission at 1.57μm was used as a light source.Direct absorption spectroscopy method was used to detect the CO_2,and the Allan variance was used to analyze the system performance.The results showed that the detection sensitivity of the system can be achieved 5.3μL·L~(-1) with the average time of 5s,and a detection sensitivity of 33.1μL·L~(-1) can be achieved by averaging in 235 s.In addition,CO_2 in the atmosphere was measured by the developed CO_2 sensor,the measured results showed that the concentration of CO_2 in the atmosphere is about 383.4μL·L~(-1).The tunable diode laser absorption spectroscopy(TDLAS)system based on cylindrical mirrors multi-pass absorption cell,combined with the cylindrical mirrors multi-pass cell can achieve long optical path in a small volume and tunable diode laser absorption spectroscopy technology has the advantages of high sensitivity,high resolution and fast response,greatly reduces volume and improves detection sensitivity of the system,which has a broad application in the field of gas detection.
引文
[1] Cai T,Gao G,Chen W,et al.Applied Spectroscopy,2011,65(1):108.
    [2] ZHANG Jian-feng,PAN Sun-qiang,LIN Xiao-lu,et al(张建锋,潘孙强,林晓露,等).Spectroscopy and Spectral Analysis(光谱学与光谱分析),2016,36(1):1.
    [3] Smith C J,So S,Xia L,et al.Applied Physics B,2013,110(2):241.
    [4] Nwaboh J A,Werhahn O,Ortwein P,et al.Measurement Science and Technology,2013,24(1):015202.
    [5] Li J,Yu B,Zhao W,et al.Applied Spectroscopy Reviews,2014,49(8):666.
    [6] XIA Hua,WU Bian,ZHANG Zhi-rong,et al(夏滑,吴边,张志荣,等).Acta Physica Sinica(物理学报),2013,62(21):214208.
    [7] Cousin J,Chen W,Fourmentin M,et al.Journal of Quantitative Spectroscopy and Radiative Transfer,2008,109(1):151.
    [8] Armstrong B H.Journal of Quantitative Spectroscopy and Radiative Transfer,1967,7(1):61.
    [9] Herriott D,Kogelnik H,Kompfner R.Applied Optics,1964,3(4):523.
    [10] Silver J A.Applied Optics,2005,44(31):6545.
    [11] Kasyutich V L,Martin P A.Applied Physics B,2007,88(1):125.
    [12] CHEN Jia-jin,ZHAO Wei-xiong,GAO Xiao-ming,et al(陈家金,赵卫雄,高晓明,等).Acta Optica Sinica(光学学报),2015,35(9):0930003.
    [13] Rothman L S,Gordon I E,Babikov Y,et al.Journal of Quantitative Spectroscopy and Radiative Transfer,2013,130:4.
    [14] Chen W,Kosterev A A,Tittel F K,et al.Applied Physics B,2008,90(2):311.
    [15] Werle P O,Mücke R,Slemr F.Applied Physics B:Lasers and Optics,1993,57(2):131.
    [16] YUAN Song,KAN Rui-feng,HE Ya-bai,et al(袁松,阚瑞峰,何亚柏,等).Chinese Journal of Lasers(中国激光),2014,41(12):1208003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700