用户名: 密码: 验证码:
CHN-T1标模的数值计算及气动特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Numerical simulation and aerodynamic performance analysis of the standard model CHN-T1
  • 作者:李浩然 ; 李亚坤 ; 张宇飞 ; 陈海昕
  • 英文作者:LI Haoran;LI Yakun;ZHANG Yufei;CHEN Haixin;School of Aerospace Engineering,Tsinghua University;
  • 关键词:CHN-T1标模 ; 湍流模式 ; 抖振特性 ; 静气弹效应 ; 雷诺数影响
  • 英文关键词:standard model CHN-T1;;turbulence model;;buffet study;;elastic deformation;;Reynolds number effect
  • 中文刊名:KQDX
  • 英文刊名:Acta Aerodynamica Sinica
  • 机构:清华大学航天航空学院;
  • 出版日期:2019-04-15
  • 出版单位:空气动力学学报
  • 年:2019
  • 期:v.37;No.175
  • 基金:国家自然科学基金项目(11872230,91852108);; 清华大学自主科研项目(2015Z22003)
  • 语种:中文;
  • 页:KQDX201902019
  • 页数:8
  • CN:02
  • ISSN:51-1192/TK
  • 分类号:167-174
摘要
基于"第一届CHN-T1标模CFD可信度研讨会"的相关计算安排,采用CFL3D求解器结合组委会提供的结构网格进行CHN-T1标模的气动特性计算。对比发现CFL3D求解器的SST湍流模式相对SA模式具有更好的网格收敛性。对标模的抖振特性进行了分析,发现抖振起源于机翼中段的激波/边界层干扰,进入抖振状态后当迎角继续增大,激波将持续增强,同时外翼段的后加载减小,使得低头力矩下降,操纵特性变差。对静气弹效应进行了分析,发现该效应主要影响了变形较大位置的升力系数以及激波强度。大雷诺数下机翼截面压力分布后加载包围的面积增大,机翼上表面超声速区的吸力平台有所下降。
        Based on the computational tasks of the "1~(st) Aeronautics CFD Credibility Workshop(AeCW-1)",the aerodynamic performance analysis of the standard model CHN-T1 is evaluated using the provided structured grid and CFL3D flow solver.The grid convergence results show that the SST turbulence model has better performance than the SA model.The buffet study shows that the interference of shock wave/boundary layer appears from the middle of the wing span,and the shock wave continues to increase its strength with increasing angle of attack.The aft loading decreases rapidly in buffet state, which causes the deterioration of control performance.The elastic deformation mainly effects the strength of shock wave and lift distribution in span direction.Under the condition of large Reynolds number,the aft loading area of the pressure coefficient increases,and the suction platform of pressure coefficient decreases,leading to a low drag coefficient.
引文
[1]王运涛,王光学,张玉伦.采用TRIP2.0软件计算DLR-F6构型的阻力[J].空气动力学学报,2009,27(01):108-113.WANG Y T,WANG G X,ZHANF Y L.Drag prediction of DLR-F6 configuration with TRIP2.0 software[J].Acta Aerodynamica Sinica,2009,27(01):108-113.(in Chinese)
    [2]WANG Z,JIANG C,GAO Z,et al.Prediction for the separation length of two-dimensional sonic injection with highspeed crossflow[J].AIAA Journal,2017,55(3):1-16.
    [3]ZHANG Y,CHEN H,WANG M,et al.Aeroacoustic prediction of a multi-element airfoil using wall-modeled largeeddy simulation[J].AIAA Journal,2017,55(1):1-15.
    [4]邓小刚,宗文刚,张来平,等.计算流体力学中的验证与确认[J].力学进展,2007(02):279-288.DENG X G,ZONG W G,ZHANG L P,et al.Verification and validation in computational fluid dynamics[J].Advances in Mechanics,2007(02):279-288.(in Chinese)
    [5]STAF A A.AIAA guide for the verification and validation of computational fluid dynamics simulations[M].American Institute of Aeronautics and Astronautics,1998.
    [6]HAASE W,CHAPUT E,LESCHZINER M A.ECARP-European computational aerodynamics research project:validation of CFD codes and assessment of turbulence models[R].Vieweg&Sohn Verlagsgesellschaft mbH,Germany,1997.
    [7]TINOCO E N,BRODERSEN O P,KEYE S,et al.Summary data from the sixth AIAA CFD drag prediction workshop:CRM Cases[J].Journal of Aircraft,2017(4):1-28.
    [8]1st AIAA CFD High Lift Prediction Workshop[EB/OL].(2009-07-13)[2018-09-20].https://hiliftpw.larc.nasa.gov/index-workshop1.html
    [9]赵童.考虑结构重量/变形的超临界机翼气动优化设计[D].北京:清华大学,2016:88-90.ZHAO T.Aerodynamic optimization design of supercritical wing based on structure weight/deformation performance[D].Beijing:Tsinghua University,2016:88-90.(in Chinese)
    [10]余永刚,周铸,黄江涛,等.单通道客机气动标模CHN-T1设计[J].空气动力学学报,2018,36(3):505-513.YU Y G,ZHOU Z,HUANG J T,et al.Aerodynamic design of a standard model CHN-T1for single-aisle passenger aircraft[J].Acta Aerodynamica Sinica,2018,36(3):505-513.(in Chinese)
    [11]李伟,王运涛,洪俊武,等.采用TRIP3.0模拟CHN-T1模型气动特性[J].空气动力学学报,2019,37(2):272-279.doi:10.7638/kqdlxxb-2018.0225LI W,WANG Y T,HONG J W,et al.Aerodynamic characteristics simulation of CHN-T1 model with TRIP3.0[J].Acta Aerodynamica Sinica,2019,37(2):272-279.(in Chinese)
    [12]NASA Langley Research Center.CFL3D Version 6Home Page[EB/OL].(2017-10-7)[2018-09-02].https://cfl3d.larc.nasa.gov/
    [13]Roe P.Approximate Riemannsolvers,parameter vectors,and difference schemes[J].Journal of Computational physics,1981,43(02):357-372.doi:10.1016/0021-9991(81)90128-5
    [14]MENTER F,RUMSEY C.Assessment of two-equation turbulence models for transonic flows[R].AIAA-94-2343,1994.doi:10.2514/6.1994-2343
    [15]SPALART P,ALLMARAS S.A one-equation turbulence model for aerodynamic flows[R].AIAA-92-0439,1992.doi:10.2514/6.1992-439
    [16]张耀冰,邓有奇,吴晓军,等.DLR-F6翼身组合体数值计算[J].空气动力学学报,2011,29(2):163-169.ZHANG Y B,DENG Y Q,WU X J,et al.Drag prediction of DLR-F6 using MFlow unstructured mesh solver[J].Acta Aerodynamica Sinica,2011,29(2):163-169.(in Chinese)
    [17]牟让科,杨永年.飞机抖振问题研究进展[J].应用力学学报,2001,18(z1):142-150.MU R K,YANG Y N.Advances of studies for the buffet problem of aircraft[J].Chinese Journal of Applied Mechanics,2001,18(z1):142-150.(in Chinese)
    [18]KENWAY G K W,MARTINS J R R A.Buffet-onset constraint Formulation for aerodynamic shape optimization[J].AIAA Journal,2017,55(6):1-18.
    [19]李强,刘大伟,许新,等.CHN-T1标模2.4米风洞气动特性试验研究[J].空气动力学学报,2019,37(2):337-344.(in Chinese)doi:10.7638/kqdlxxb-2018.0099LI Q,LIU D,XU X,et al.Experimental study of aerodynamic characteristic of CHN-T1standard model in 2.4m transonic wind tunnel[J].Acta Aerodynamica Sinica,2019,37(2):337-344.(in Chinese)
    [20]顾诵芬,吴兴世,杨新军.运输类飞机的空气动力学设计[M].上海:上海交通大学出版社,2010:332.
    [21]邓烨明.推进/机体一体化中的积分方法研究[D].北京:清华大学,2017:20-22.DENG Y M.Research on integrating method of propulsion/airframe integration[D].Beijing:Tsinghua University,2017:20-22.(in Chinese)
    [22]张培红,周乃春,邓有奇,等.雷诺数对飞机气动特性的影响研究[J].空气动力学学报,2012,30(6):693-698.ZHANG P H,ZHOU N C,DENG Y Q,et al.The effects of Reynolds number on airplane aerodynamic characteristics[J].Acta Aerodynamica Sinica,2012,30(6):693-698.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700