用户名: 密码: 验证码:
基于光场调控的高时空分辨率光学成像
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High Spatiotemporal Imaging Based on Optical Field Engineering
  • 作者:李润丰 ; 施可彬
  • 英文作者:Li Runfeng;Shi Kebin;State Key Laboratory for Artificial Microstructure and Mesoscopic Physics,School of Physics,Peking University;Collaborative Innovation Center of Extreme Optics,Shanxi University;
  • 关键词:物理光学 ; 成像系统 ; 光学成像 ; 超分辨 ; 光场调控
  • 英文关键词:physical optics;;imaging systems;;optical imaging;;super-resolution;;optical field engineering
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:北京大学物理学院人工微结构和介观物理国家重点实验室;山西大学极端光学协同创新中心;
  • 出版日期:2018-11-13 10:55
  • 出版单位:光学学报
  • 年:2019
  • 期:v.39;No.442
  • 基金:国家自然科学基金(91750203)
  • 语种:中文;
  • 页:GXXB201901011
  • 页数:15
  • CN:01
  • ISSN:31-1252/O4
  • 分类号:166-180
摘要
光学成像以其非侵入性的特点被广泛应用于生物医学、物理和化学等领域。通过对光场时域和空域参数的调控,可以有效调制光的时序、波前、振幅、相位、色散等特性,从而获得具有高时空分辨率的光学图像。以光场调控原理为主线,综述近年来高时空分辨成像技术的研究进展。
        Optical imaging has been widely used in bio-medical, physical and chemical research fields due to its noninvasive characteristic. By adjusting the temporal and spatial parameters of the optical fields, we can effectively modulate the time sequence, wavefront, amplitude, phase, dispersion and other characteristics of the light, and obtain the optical image with high temporal and spatial resolution. On the basis of the principle of optical fields engineering, the recent progresses in the research of high temporal-spatial resolution imaging technology are reviewed.
引文
[1] Abbe E. Beitrage zur theorie des mikroskops und der mikroskopischen wahrnehmung[J]. Archiv Für Mikroskopische Anatomie, 1873, 9(1):413-418.
    [2] Rust M J, Bates M, Zhuang X W. Sub-diffractionlimit imaging by stochastic optical reconstruction microscopy(STORM)[J]. Nature Methods, 2006, 3(10):793-796.
    [3] Betzig E, Patterson G H, Sougrat R, et al. Imaging intracellular fluorescent proteins at nanometer resolution[J]. Science, 2006, 313(5793):1642-1645.
    [4] Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivationlocalization microscopy[J]. Biophysical Journal,2006, 91(11):4258-4272.
    [5] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 2009, 458(7242):1145-1149.
    [6] Keller P J, Schmidt A D, Wittbrodt J, et al.Reconstruction of zebrafish early embryonic development by scanned light sheet microscopy[J].Science, 2008, 322(5904):1065-1069.
    [7] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission:stimulatedemission-depletion fluorescence microscopy[J].Optics Letters, 1994, 19(11):780-782.
    [8] Klar T A, Hell S W. Subdiffraction resolution in farfield fluorescence microscopy[J]. Optics Letters,1999, 24(14):954-956.
    [9] Gustafsson M G L. Nonlinear structured-illumination microscopy:wide-field fluorescence imaging with theoretically unlimited resolution[C]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13081-13086.
    [10] Cotte Y, Toy F, Jourdain P, et al. Marker-free phase nanoscopy[J]. Nature Photonics, 2013, 7(2):113-117.
    [11] Hafi N, Grunwald M, van den Heuvel L S, et al.Fluorescence nanoscopy by polarization modulation and polarization angle narrowing[J]. Nature Methods, 2014, 11(5):579-584.
    [12] Valades Cruz C A, Shaban H A, Kress A, et al.Quantitative nanoscale imaging of orientational order in biological filaments by polarized superresolution microscopy[C]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(7):E820-E828.
    [13] Gelles J, Schnapp B J, Sheetz M P. Tracking kinesin-driven movements with nanometre-scale precision[J]. Nature, 1988, 331(6155):450-453.
    [14] Ghosh R N, Webb W W. Automated detection and tracking of individual and clustered cell surface low density lipoprotein receptor molecules[J].Biophysical Journal, 1994, 66(5):1301-1318.
    [15] Yildiz A, Forkey J N, Mckinney S A, et al. Myosin V walks hand-over-hand:single fluorophore imaging with 1.5-nm localization[J]. Science, 2003, 300(5628):2061-2065.
    [16] Abbondanzieri E A, Greenleaf W J, Shaevitz J W,et al. Direct observation of base-pair stepping by RNA polymerase[J]. Nature, 2005, 438(7067):460-465.
    [17] Huang B, Bates M, Zhuang X W. Super-resolution fluorescence microscopy[J]. Annual Review ofBiochemistry, 2009, 78(1):993-1016.
    [18] Bates M, Huang B, Dempsey G T, et al. Multicolor super-resolution imaging with photo-switchable fluorescent probes[J]. Science, 2007, 317(5845):1749-1753.
    [19] Huang B, Wang W, Bates M, et al. Threedimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008,319(5864):810-813.
    [20] Huang B, Jones S A, Brandenburg B, et al. Wholecell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution[J].Nature Methods, 2008, 5(12):1047-1052.
    [21] Juette M F, Gould T J, Lessard M D, et al. Threedimensional sub-100 nm resolution fluorescence microscopy of thick samples[J]. Nature Methods,2008, 5(6):527-529.
    [22] Pavani S R P, Thompson M A, Biteen J S, et al.Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function[C]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9):2995-2999.
    [23] Bates M, Blosser T R, Zhuang X W. Short-range spectroscopic ruler based on a single-molecule optical switch[J]. Physical Review Letters, 2005, 94(10):108101.
    [24] Shroff H, Galbraith C G, Galbraith J A, et al. Livecell photoactivated localization microscopy of nanoscale adhesion dynamics[J]. Nature Methods,2008, 5(5):417-423.
    [25] Hess S T, Gould T J, Gudheti M V, et al. Dynamic clustered distribution of hemagglutinin resolved at40 nm in living cell membranes discriminates between raft theories[C]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(44):17370-17375.
    [26] Manley S, Gillette J M, Patterson G H, et al. Highdensity mapping of single-molecule trajectories with photoactivated localization microscopy[J]. Nature Methods, 2008, 5(2):155-157.
    [27] Jones S A, Shim S H, He J, et al. Fast, threedimensional super-resolution imaging of live cells[J].Nature Methods, 2011, 8(6):499-505.
    [28] Zhu L, Zhang W, Elnatan D, et al. Faster STORM using compressed sensing[J]. Nature Methods,2012, 9(7):721-723.
    [29] Xu K, Babcock H P, Zhuang X W. Dual-objective STORM reveals three-dimensional filament organization in the actin cytoskeleton[J]. Nature Methods, 2012, 9(2):185-188.
    [30] Tehrani K F, Xu J Q, Zhang Y W, et al. Adaptive optics stochastic optical reconstruction microscopy(AO-STORM)using a genetic algorithm[J]. Optics Express, 2015, 23(10):13677-13692.
    [31] Agrawal G P. Nonlinear fiber optics, in nonlinear science at the dawn of the 21st century[M]. Berlin:Springer, 2000:195-211.
    [32] Lau A K S, Wong T T W, Ho K K Y, et al.Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1μm[J].Journal of Biomedical Optics, 2014, 19(7):076001.
    [33] Guo Q, Chen H W, Weng Z L, et al. Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition[J]. Optics Express, 2015, 23(23):29639-29646.
    [34] Lei C, Kobayashi H, Wu Y,et al. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy[J]. Nature Protocols, 2018, 13(7):1603-1631.
    [35] Nitta N, Sugimura T, Isozaki A, et al. Intelligent cell search engine[J/OL]. SSRN Electronic Journal,2018. https://papers. ssrn. com/sol3/papers. cfm?abstract_id=3204560.
    [36] Bradley D J, Liddy B, Sleat W E. Direct linear measurement of ultrashort light pulses with a picosecond streak camera[J]. Optics Communications, 1971, 2(8):391-395.
    [37] Gao L, Liang J Y, Li C Y, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516(7529):74-77.
    [38] Gustafsson M G L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[J]. Journal of Microscopy, 2000, 198(2):82-87.
    [39] Gustafsson M G L, Shao L, Carlton P M, et al.Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[J]. Biophysical Journal, 2008, 94(12):4957-4970.
    [40] Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy[J].Journal of Cell Biology, 2010, 190(2):165-175.
    [41] Heintzmann R, Cremer C G. Laterally modulated excitation microscopy:improvement of resolution by using a diffraction grating[C]. Proceedings of SPIE,1999, 3568(8442):1399-1400.
    [42] Fedosseev R, Belyaev Y, Frohn J, et al. Structured light illumination for extended resolution in fluorescence microscopy[J]. Optics and Lasers in Engineering, 2005, 43(3/4/5):403-414.
    [43] Sonnen K F, Schermelleh L, Leonhardt H, et al.3D-structured illumination microscopy provides novel insight into architecture of human centrosomes[J].Biology Open, 2012,1(10):965-976.
    [44] Li D, Shao L, Chen B C, et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics[J].Science, 2015, 349(6251):3500.
    [45] Li D, Betzig E. Response to comment on “extendedresolution structured illumination imaging of endocytic and cytoskeletal dynamics”[J]. Science,2016, 352(6285):527.
    [46] Sahl S J, Balzarotti F, Keller-Findeisen J, et al.Comment on “extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics"[J]. Science, 2016,352(6285):527.
    [47] Wicker K, Mandula O, Best G, et al. Phase optimisation for structured illumination microscopy[J]. Optics Express, 2013, 21(2):2032-2049.
    [48] Wicker K. Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in Fourier space[J]. Optics Express, 2013, 21(21):24692-24701.
    [49] Krizek P, Lukes T, Ovesny M, et al. SIMToolbox:a MATLAB toolbox for structured illumination fluorescence microscopy[J]. Bioinformatics, 2016,32(2):318-320.
    [50] Müller M, M(o|¨)nkem(o|¨)ller V, Hennig S, et al. Opensource image reconstruction of super-resolution structured illumination microscopy data in imageJ[J]. Nature Communications, 2016, 7:10980.
    [51] Rossberger S, Best G, Baddeley D, et al.Combination of structured illumination and single molecule localization microscopy in one setup[J].Journal of Optics, 2013, 15(9):094003.
    [52] Monkemoller V,(?)ie C, Hiibner W, et al.Multimodal super-resolution optical microscopy visualizes the close connection between membrane and the cytoskeleton in liver sinusoidal endothelial cell fenestrations[J]. Scientific Reports, 2015, 5:16279.
    [53] Park J H, Lee S W, Lee E S, et al. A method for super-resolved CARS microscopy with structured illumination in two dimensions[J]. Optics Express,2014, 22(8):9854-9870.
    [54] Fuchs E, Jaffe J S, Long R A, et al. Thin laser light sheet microscope for microbial oceanography[J].Optics Express, 2002, 10(2):145-154.
    [55] Huisken J, Swoger J, Del B F, et al. Optical sectioning deep inside live embryos by selective plane illumination microscopy[J]. Science, 2004, 305(5686):1007-1009.
    [56] Huisken J,Stainier D Y R. Even fluorescence excitation by multidirectional selective plane illumination microscopy(mSPIM)[J]. Optics Letters, 2007, 32(17):2608-2610.
    [57] Gebhardt J C M, Suter D M, Roy R, et al. Singlemolecule imaging of transcription factor binding to DNA in live mammalian cells[J]. Nature Methods,2013, 10(5):421-426.
    [58] Li T C, Ota S, Kim J, et al. Axial plane optical microscopy[J]. Scientific Reports, 2015, 4:7253.
    [59] Planchon T A, Gao L, Milkie D E, et al. Rapid three-dimensional isotropic imaging of living cells using Bessel beam plane illumination[J]. Nature Methods, 2011, 8(5):417-423.
    [60] Chen B C, Legant W R, Wang K, et al. Lattice light-sheet microscopy:imaging molecules to embryos at high spatiotemporal resolution[J].Science, 2014, 346(6208):1257998.
    [61] Gao L. Extend the field of view of selective plan illumination microscopy by tiling the excitation light sheet[J]. Optics Express, 2015, 23(5):6102-6111.
    [62] Theer P, Dragneva D, Knop M.πSPIM:high NA high resolution isotropic light-sheet imaging in cell culture dishes[J]. Scientific Reports, 2016, 6:32880.
    [63] Mickoleit M, Schmid B, Weber M, et al. Highresolution reconstruction of the beating zebrafish heart[J]. Nature Methods, 2014, 11(9):919-922.
    [64] Keller P J, Schmidt A D, Santella A, et al. Fast,high-contrast imaging of animal development with scanned light sheet-based structured-illumination microscopy[J]. Nature Methods, 2010, 7(8):637-642.
    [65] Masson A, Escande P, Frongia C, et al. Highresolution in-depth imaging of optically cleared thick samples using an adaptive SPIM[J].Scientific Reports, 2015, 5:16898.
    [66] Hell S W. Nanoscopy with focused light(Nobel lecture)[J]. Angewandte Chemie International Edition, 2015, 54(28):8054-8066.
    [67] Westphal V, Hell S W. Nanoscale resolution in the focal plane of an optical microscope[J]. Physical Review Letters, 2005, 94(14):143903.
    [68] Dyba M, Hell S W. Focal spots of sizeλ/23 open up far-field florescence microscopy at 33 nm axial resolution[J]. Physical Review Letters, 2002, 88(16):163901.
    [69] Rittweger E, Han K Y, Irvine S E, et al. STED microscopy reveals crystal colour centres with nanometric resolution[J]. Nature Photonics, 2009, 3(3):144-147.
    [70] Donnert G, Keller J, Medda R, et al.Macromolecular-scale resolution in biological fluorescence microscopy[C]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(31):11440-11445.
    [71] Willig K I, Kellner R R, Medda R, et al. Nanoscale resolution in GFP-based microscopy[J]. Nature Methods, 2006, 3(9):721-723.
    [72] Westphal V, Rizzoli S O, Lauterbach M A, et al.Video-rate far-field optical nanoscopy dissects synaptic vesicle movement[J]. Science, 2008, 320(5873):246-249.
    [73] Berning S, Willig K I, Steffens H, et al. Nanoscopy in a living mouse brain[J]. Science, 2012, 335(6068):551-551.
    [74] Willig K I, Steffens H, Gregor C, et al. Nanoscopy of filamentous actin in cortical dendrites of a living mouse[J]. Biophysical Journal, 2014, 106(1):L01-L03.
    [75] Harke B, Ullal C K, Keller J, et al. Threedimensional nanoscopy of colloidal crystals[J]. Nano Letters, 2008, 8(5):1309-1313.
    [76] Schmidt R, Wurm C A, Jakobs S, et al. Spherical nanosized focal spot unravels the interior of cells[J].Nature Methods, 2008, 5(6):539-544.
    [77] Schmidt R, Wurm C A, Punge A, et al.Mitochondrial cristae revealed with focused light[J].Nano Letters, 2009, 9(6):2508-2510.
    [78] Danzl J G, Sidenstein S C, Gregor C, et al.Coordinate-targeted fluorescence nanoscopy with multiple off states[J]. Nature Photonics, 2016, 10(2):122-128.
    [79] Donnert G, Keller J, Wurm C A, et al. Two-color far-field fluorescence nanoscopy[J]. Biophysical Journal, 2007, 92(8):L67-L69.
    [80] Hell S W. Toward fluorescence nanoscopy[J].Nature Biotechnology, 2003, 21(11):1347-1355.
    [81] Hell S W, Dyba M, Jakobs S. Concepts for nanoscale resolution in fluorescence microscopy[J].Current Opinion in Neurobiology, 2004, 14(5):599-609.
    [82] Hofmann M, Eggeling C, Jakobs S, et al. Breaking the diffraction barrier in fluorescence microscopy at low light intensities by using reversibly photoswitchable proteins[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(49):17565-17569.
    [83] Hell S W, Kroug M. Ground-state-depletion fluorescence microscopy:a concept for breaking the diffraction resolution limit[J]. Applied Physics B:Lasers and Optics, 1995, 60(5):495-497.
    [84] Bretschneider S, Eggeling C, Hell S W. Breaking the diffraction barrier in fluorescence microscopy by optical shelving[J]. Physical Review Letters, 2007,98(21):218103.
    [85] Foelling J, Bossi M, Bock H, et al. Fluorescence nanoscopy by ground-state depletion and singlemolecule return[J]. Nature Methods, 2008, 5(11):943-945.
    [86] Chmyrov A, Keller J, Grotjohann T, et al.Nanoscopy with more than 100, 000'doughnuts'[J]. Nature Methods, 2013, 10(8):737-740.
    [87] Wang P, Slipchenko M N, Mitchell J, et al. Farfield imaging of non-fluorescent species with subdiffraction resolution[J]. Nature Photonics,2013, 7(6):450-454.
    [88] Rieger S, Fischedick M, Boller K J, et al.Suppression of resonance Raman scattering via ground state depletion towards sub-diffraction-limited label-free microscopy[J]. Optics Express, 2016, 24(18):20745-20754.
    [89] Fischer J, Wegener M. Three-dimensional optical laser lithography beyond the diffraction limit[J].Laser&Photonics Reviews, 2013, 7(1):22-44.
    [90] Vrabioiu A M, Mitchison T J. Structural insights into yeast septin organization from polarized fluorescence microscopy[J]. Nature, 2006, 443(7110):466-469.
    [91] Demay B S, Noda N, Gladfelter A S, et al. Rapid and quantitative imaging of excitation polarized fluorescence reveals ordered septin dynamics in live yeast[J]. Biophysical Journal, 2011, 101(4):985-994.
    [92] Kress A, Wang X, Ranchon H, et al. Mapping the local organization of cell membranes using excitationpolarization-resolved confocal fluorescence microscopy[J]. Biophysical Journal, 2013, 105(1):127-136.
    [93] Wang X, Kress A, Brasselet S, et al. High frame-rate fluorescence confocal angle-resolved linear dichroism microscopy[J]. Review of Scientific Instruments, 2013, 84(5):053708.
    [94] Lazar J, Bondar A, Timr S, et al. Two-photon polarization microscopy reveals protein structure and function[J]. Nature Methods, 2011, 8(8):684-690.
    [95] Forkey J N, Quinlan M E, Shaw M A, et al. Threedimensional structural dynamics of myosin V by single-molecule fluorescence polarization[J]. Nature,2003, 422(6930):399-404.
    [96] Fooksman D R, Edidin M, Barisas B G. Measuring rotational diffusion of MHC class I on live cells by polarized FPR[J]. Biophysical Chemistry, 2007, 130(1-2):10-16.
    [97] Zhanghao K, Chen L, Yang X S, et al. Superresolution dipole orientation mapping via polarization demodulation[J]. Light:Science&Applications,2016, 5(10):e16166.
    [98] Ohmachi M, Komori Y, Iwane A H, et al.Fluorescence microscopy for simultaneous observation of 3D orientation and movement and its application to quantum rod-tagged myosin V[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(14):5294-5298.
    [99] Liu T L, Upadhyayula S, Milkie D E, et al.Observing the cell in its native state:imaging subcellular dynamics in multicellular organisms[J].Science, 2018, 360(6386):1392.
    [100] Ounkomol C, Seshamani S, Maleckar M M, et al.Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy[J]. Nature Methods, 2018, 15(11):917-920.
    [101] Januszewski M, Kornfeld J, Li P H, et al. Highprecision automated reconstruction of neurons with flood-filling networks[J]. Nature Methods, 2018, 15(8):605-610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700