用户名: 密码: 验证码:
高速铁路水泥改良黄土路基长期动力稳定性评价
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Long-term dynamic stability evaluation for cement-improved loess subgrade of high speed railway
  • 作者:张沛云 ; 马学宁 ; 李善珍 ; 王旭
  • 英文作者:ZHANG Peiyun;MA Xuening;LI Shanzhen;WANG Xu;College of Civil Engineering, Lanzhou Jiaotong University;
  • 关键词:高速铁路 ; 水泥改良黄土 ; 基床底层 ; 疲劳动剪应变门槛 ; 临界动应力 ; 长期动力稳定性
  • 英文关键词:high-speed railway;;cement-improved loess;;subgrade bed bottom layer;;fatigue dynamic shear strain threshold;;critical dynamic stress;;long-term dynamic stability
  • 中文刊名:ZDCJ
  • 英文刊名:Journal of Vibration and Shock
  • 机构:兰州交通大学土木工程学院;
  • 出版日期:2019-06-15
  • 出版单位:振动与冲击
  • 年:2019
  • 期:v.38;No.343
  • 基金:国家自然科学基金(41562014)
  • 语种:中文;
  • 页:ZDCJ201911014
  • 页数:8
  • CN:11
  • ISSN:31-1316/TU
  • 分类号:88-95
摘要
通过应力控制式动三轴试验对水泥改良黄土的疲劳特性进行了研究,探讨了水泥掺量、围压及固结比对其的影响,并基于临界动应力法以及动剪应变法对水泥改良黄土路基的长期动力稳定性进行了评价。研究结果表明:水泥改良黄土动弹性模量E_d随动应力σ_d的增加呈现出先增大后减小的趋势,提出了通过E_d-σ_d曲线确定疲劳动剪应变门槛的方法;ε_p-lg N曲线按走势可分为稳定型、临界型以及破坏型;疲劳动剪应变门槛及临界动应力随着水泥掺量、围压及固结比的增大逐渐增大,且水泥掺量对其影响最大,围压的影响次之,固结比最小,经回归分析,得到两个简单实用的经验估算公式。评价结果表明以水泥改良黄土作为基床底层填料时,路基长期动力稳定性满足要求,综合考虑建议水泥掺量控制在5%左右;动剪应变法是一种比临界动应力法更优的评价方法。
        Fatigue property of cement-improved loess was studied with stress-controlled dynamic tri-axial tests to explore influences of cement content, confining pressure and consolidation ratio on its fatigue properties. The critical dynamic stress method and the dynamic shear strain method were adopted to evaluate the long-term dynamic stability of cement-improved loess subgrade. The results showed that the dynamic elastic modulus E_d of cement-improved loess has a trend of increasing firstly and then decreasing with increase in dynamic stress σ_d, the method to determine the fatigue dynamic shear strain threshold with E_d-σ_d curve is proposed; ε_p-lg N curves can be divided into stable type, critical one and destructive one according to their trends; With increase in cement content, confining pressure and consolidation ratio, the dynamic shear strain threshold and critical dynamic stress of cement-improved loess gradually increase, and cement content has the maximum influence on them, the influence of confining pressure is the second, the influence of consolidation ratio is the smallest; through the regression analysis, two simple and applicable empirical estimation formulas are obtained; when cement-improved loess is used as the subgrade bed bottom layer packing, the subgrade long-term dynamic stability can meet requirements; cement content is suggested to be controlled within about 5%; the dynamic shear strain method is a better evaluation method than the critical dynamic stress method be.
引文
[1] 杨广庆.水泥改良土的动力特性试验研究[J].岩石力学与工程学报,2003,22(7):1156-1160.YANG Guangqing.Study of dynamic performance of cement-improved soil[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(7):1156-1160.
    [2] 冷伍明,刘文劼,周文权.振动荷载作用下重载铁路路基粗颗粒土填料临界动应力试验研究[J].振动与冲击,2015,34(16):25-30.LENG Wuming,LIU Wenjie,ZHOU Wenquan.Testing research on critical cyclical stress of coarse-grainedsoil filling in heavy haul railway subgrade[J].Journal of Vibration and Shock,2015,34(16):25-30.
    [3] VUCETIC M.Cyclic threshold shear strain soils[J].J Geotech Engrg,1994,120(12):2208-2228.
    [4] 胡一峰,李怒放.高速铁路无砟轨道路基设计原理[M].北京:中国铁道出版社,2010.
    [5] HU Y,GARTUNG E,PRüHS H,et al.Bewertung der dynamischen stablitit?tvon erdbauwerken unter eisenba-hnverkehr[J].Geotechnik,2003,26(1):42-56.
    [6] HU Y,HUAPT W,MüLLNER B.Rescol-versuche zur prüfung der dynamischen langzeist?bilitat von TA/TM-B?den unter eisenbahnverkehr[J].Bautechnik,2004,81(4):295-306.
    [7] 刘晓红,杨果林,方薇.高铁无砟轨道路堑基床换填厚度与动力稳定[J].岩石力学与工程学报,2011,30(增刊2):3534-3538.LIU Xiaohong,YANG Guolin,FANG Wei.Replacement thickness and dynamic stability of cutting bed under ballastless track of high-speed railway[J].Chinese Journal of Rock Mechanics and Engineering,2011,30(Sup2):3534-3538.
    [8] 陈湘亮,王永和,周天应,等.泥质粉砂岩物理改良土路基长期动力稳定性分析[J].中南大学学报(自然科学版),2012,43(9):3619-3624.CHEN Xiangliang,WANG Yonghe,ZHOU Tianying,et al.Long-term dynamic stability analysis on argillaceous siltstone physical improved soil subgrade of high-speed railway[J].Journal of Central South University (Science and Technology),2012,43(9):3619-3624.
    [9] 李善珍.高速铁路水泥改良黄土路基动力稳定性研究[D].兰州:兰州交通大学,2017.
    [10] 刘建坤.路基工程[M].北京:中国建筑工业出版社,2006.
    [11] 杨广庆,管振祥.高速铁路路基改良填料的试验研究[J].岩土工程学报,2001,23(6):682-685.YANG Guangqing,GUAN Zhenxiang.Experimental study on improved soil for high-speed railway subgrade[J].Chinese Journal of Geotechnical Engineering,2001,23(6):682-685.
    [12] 胡一峰.高速铁路路基长期动力稳定性分析的理论和实践(SCR-SG021)[R].慕尼黑:欧博迈亚公司,2008.
    [13] 杨桂通.土动力学[M].北京:中国建筑工业出版社,2000.
    [14] Deutsche Bahn Gruppe.Entwurf von Richtlinie 836(DS 836) Vorschriftfür erdbau werke[S].Berlin:Architektur und Technische Wissenschaften GmbH Co.,KG,1997.
    [15] 中华人民共和国铁道部铁路工程抗震设计规范:GB 50111—2006[S].北京:中国计划出版社,2009.
    [16] 马学宁,梁波,高峰.高速铁路板式无砟轨道-路基结构动力特性研究[J].铁道学报,2011,33(2):72-78.MA Xuening,LIANG Bo,GAO Feng.Study on the dynamic properties of slab ballastless track and subgrade structure on high-speed railway[J].Journal of the China Railway Society,2011,33(2):72-78.
    [17] 中铁第四勘察设计院集团有限公司.客运专线无碴轨道过渡段路基试验段动态响应测试研究分报告[R].武汉:中铁第四勘察设计院集团有限公司,2009.
    [18] 屈昌姿,王永和,魏丽敏,等.武广高速铁路路基振动现场测试与分析[J].岩土力学,2012,33(5):1451-1456.QU Changzi,WANG Yonghe,WEI Limin,et al.In-situ test and analysis of vibration of subgrade for Wuhan-Guangzhou high-speed railway[J].Rock and Soil Mechanics,2012,33(5):1451-1456.
    [19] 张石友,孙海建,陈艳国.高速铁路双线路基动应力的特性研究[J].振动与冲击,2016,35(17):165-170.ZHANG Shiyou,SUN Haijian,CHEN Yanguo.Dynamic stress distribution of high-speed railway double-subgrade[J].Journal of Vibration and Shock,2016,35(17):165-170.
    [20] 孟飞,唐棠,刘蓓.不同类型无砟轨道路基动力响应研究[J].铁道科学与工程学报,2011,8(4):19-23.MENG Fei,TANG Tang,LIU Bei.Dynamic response of different ballastless track subgrade[J].Journalof Railway Science and Engineering,2011,8(4):19-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700