用户名: 密码: 验证码:
壳聚糖碳点的水热法制备及其对金属离子的选择性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Hydrothermal Preparation of Chitosan Carbon Dots and Their Selectivity to Metal Ions
  • 作者:汪雪琴 ; 洪碧云 ; 杨旋 ; 梁倩 ; 黄彪 ; 唐丽荣
  • 英文作者:WANG Xue-qin;HONG Bi-yun;YANG Xuan;LIANG Qian;HUANG Biao;TANG Li-rong;College of Material Engineering, Fujian Agriculture and Forestry University;Jinshan College of Fujian Agriculture and Forestry University;
  • 关键词:碳点 ; 壳聚糖 ; 荧光探针 ; 水热法 ; Fe~(3+)
  • 英文关键词:carbon dots;;chitosan;;fluorescence probe;;hydrothermal method;;Fe~(3+ )
  • 中文刊名:FGXB
  • 英文刊名:Chinese Journal of Luminescence
  • 机构:福建农林大学材料工程学院;福建农林大学金山学院;
  • 出版日期:2019-03-15
  • 出版单位:发光学报
  • 年:2019
  • 期:v.40
  • 基金:林业公益性行科研专项(201504603);; 国家自然科学基金(31770611);; 福建省科技厅自然科学基金(2016J01088);; 福建农林大学“校杰出青年科研人才”培养专项基金(xjq201422)资助项目~~
  • 语种:中文;
  • 页:FGXB201903003
  • 页数:9
  • CN:03
  • ISSN:22-1116/O4
  • 分类号:15-23
摘要
以壳聚糖为碳源通过水热法合成碳点,对影响碳点荧光强度的水热温度、水热时间和壳聚糖质量分数进行考察。通过紫外分光光度计、荧光分光光度计、原子力显微、Fourier红外光谱仪、X-ray光电子能谱、X射线衍射仪对壳聚糖碳点的光学性质、化学结构、晶体结构、形貌结构等进行表征分析。结果表明,在水热温度200℃、水热时间9 h、壳聚糖质量分数2%的条件下制备得到的壳聚糖碳点量子产率为32.86%。碳点呈现出主要尺寸为3~10 nm的球形颗粒状,且在波长335 nm激发下,发射峰位于410 nm(蓝)。对金属离子的选择性研究分析表明,Fe~(3+)对碳点溶液的荧光猝灭效应最显著,说明碳点对Fe~(3+)具有较好敏感性和高选择性,且荧光猝灭效率对Fe~(3+)浓度在0~100μmol/L范围内呈现线性响应,因此有望将碳点作为荧光探针应用于Fe~(3+)的检测表征。
        In this study, carbon dots(CDs) were synthesized by hydrothermal method using chitosan(CTs) as carbon source. The influences of hydrothermal temperature, hydrothermal time and chitosan mass fraction on the fluorescence intensity of carbon dots were investigated. The optical properties, chemical structure, crystal structure, and morphology of CDs were characterized by using ultraviolet spectrophotometer(UV-vis), fluorescence spectrophotometer, atomic force microscope(AFM), Fourier transform infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and X-ray diffractometer(XRD). The results showed that the quantum yield of CDs was 32.86% at a hydrothermal temperature of 200 ℃, a hydrothermal time of 9 h and a chitosan mass fraction of 2%. The carbon dots show a spherical shape with a main size of 3 to 10 nm. When the carbon dots excited at a wavelength of 335 nm, the emission peak is located at 410 nm and presents blue light. The selective analysis of metal ions shows that the fluorescence quenching effect of Fe~(3+) on the CDs is the most significant, indicating that the carbon dots have good sensitivity and high selectivity for Fe~(3+). The fluorescence quenching efficiency exhibits a linear response when Fe~(3+) concentration in the range of 0~100 μmol/L, which makes it possible to use the carbon dots as a fluorescent probe for the detection and characterization of Fe~(3+).
引文
[1] DALAL J,GUPTA A,LATHER S,et al.. Poly (3,4-ethylene dioxythiophene) laminated reduced graphene oxide composites for effective electromagnetic interference shielding [J]. J. Alloys Compd., 2016,682:52-60.
    [2] ZHAO D L,GAO X,WU C N,et al.. Facile preparation of amino functionalized graphene oxide decorated with Fe3O4 nanoparticles for the adsorption of Cr(Ⅵ) [J]. Appl. Surf. Sci., 2016,384:1-9.
    [3] ZHAO Y J,LI C,FAN X Y,et al.. Study on the separation performance of the multi-channel reduced graphene oxide membranes [J]. Appl. Surf. Sci., 2016,384:279-286.
    [4] SINGH R P,SHARMA G,SONALI,et al.. Effects of transferrin conjugated multi-walled carbon nanotubes in lung cancer delivery [J]. Mater. Sci. Eng. C, 2016,67:313-325.
    [5] SREEKANTH M,GHOSH S,BISWAS P,et al.. Improved field emission from indium decorated multi-walled carbon nanotubes [J]. Appl. Surf. Sci., 2016,383:84-89.
    [6] HU Q,PAAU M C,ZHANG Y,et al.. Capillary electrophoretic study of amine/carboxylic acid-functionalized carbon nanodots [J]. J. Chromatogr. A, 2013,1304:234-240.
    [7] TUERHONG M,YANG X U,YIN X B. Review on carbon dots and their applications [J]. Chin. J. Anal. Chem., 2017,45(1):139-150.
    [8] XU X Y,RAY R,GU Y L,et al.. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments [J]. J. Am. Chem. Soc., 2004,126(40):12736-12737.
    [9] SUN Y P,ZHOU B,LIN Y,et al.. Quantum-sized carbon dots for bright and colorful photoluminescence [J]. J. Am. Chem. Soc., 2006,128(24):7756-7757.
    [10] QIAN Z S,SHAN X Y,CHAI L J,et al.. Si-doped carbon quantum dots:a facile and general preparation strategy,bioimaging application,and multifunctional sensor [J]. ACS Appl. Mater. Interfaces, 2014,6(9):6797-6805.
    [11] ZHANG L L,HAN Y J,ZHU J B,et al.. Simple and sensitive fluorescent and electrochemical trinitrotoluene sensors based on aqueous carbon dots [J]. Anal. Chem., 2015,87(4):2033-2036.
    [12] DING H,DU F Y,LIU P C,et al.. DNA-carbon dots function as fluorescent vehicles for drug delivery [J]. ACS Appl. Mater. Interfaces, 2015,7(12):6889-6897.
    [13] CHEN P,WANG Z Y,ZONG S F,et al.. pH-sensitive nanocarrier based on gold/silver core-shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells [J]. Biosens. Bioelectron., 2016,75:446-451.
    [14] SAHU S,LIU Y M,WANG P,et al.. Visible-light photoconversion of carbon dioxide into organic acids in an aqueous solution of carbon dots [J]. Langmuir, 2014,30(28):8631-8636.
    [15] FERNANDO K A S,SAHU S,LIU Y M,et al.. Carbon quantum dots and applications in photocatalytic energy conversion [J]. ACS Appl. Mater. Interfaces, 2015,7(16):8363-8376.
    [16] TADA H,FUJISHIMA M,KOBAYASHI H. Photodeposition of metal sulfide quantum dots on titanium(Ⅳ) dioxide and the applications to solar energy conversion [J]. Chem. Soc. Rev., 2011,40(7):4232-4243.
    [17] HUANG H,LI C G,ZHU S J,et al.. Histidine-derived nontoxic nitrogen-doped carbon dots for sensing and bioimaging applications [J]. Langmuir, 2014,30(45):13542-13548.
    [18] 曲松楠,刘星元,申德振. 氮掺杂发光碳纳米点的研究探索 [J]. 发光学报, 2014,35(9):1019-1026. QU S N,LIU X Y,SHEN D Z. Studies on nitrogen-dopped carbon nanodots [J]. Chin. J. Lumin., 2014,35(9):1019-1026. (in Chinese)
    [19] CAO L,WANG X,MEZIANI M J,et al.. Carbon dots for multiphoton bioimaging [J]. J. Am. Chem. Soc., 2007,129(37):11318-11319.
    [20] LUO P G,SAHU S,YANG S T,et al.. Carbon “quantum” dots for optical bioimaging [J]. J. Mater. Chem. B, 2013,1(16):2116-2127.
    [21] YANG S T,CAO L,LUO P G,et al.. Carbon dots for optical imaging in vivo [J]. J. Am. Chem. Soc., 2009,131(32):11308-11309.
    [22] BIJU V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing,imaging,drug delivery and therapy [J]. Chem. Soc. Rev., 2014,43(3):744-764.
    [23] XU J J,ZHAO W W,SONG S P,et al.. Functional nanoprobes for ultrasensitive detection of biomolecules:an update [J]. Chem. Soc. Rev., 2014,43(5):1601-1611.
    [24] LIN L P,RONG M C,LUO F,et al.. Luminescent graphene quantum dots as new fluorescent materials for environmental and biological applications [J]. TrAC Trends Anal. Chem., 2014,54:83-102.
    [25] TIAN L,GHOSH D,CHEN W,et al.. Nanosized carbon particles from natural gas soot [J]. Chem. Mater., 2009,21(13):2803-2809.
    [26] HAN S,ZHANG H,XIE Y J,et al.. Application of cow milk-derived carbon dots/Ag NPs composite as the antibacterial agent [J]. Appl. Surf. Sci., 2015,328:368-373.
    [27] SHEN L M,CHEN M L,HU L L,et al.. Growth and stabilization of silver nanoparticles on carbon dots and sensing application [J]. Langmuir, 2013,29(52):16135-16140.
    [28] JIN J C,XU Z Q,DONG P,et al.. One-step synthesis of silver nanoparticles using carbon dots as reducing and stabilizing agents and their antibacterial mechanisms [J]. Carbon, 2015,94:129-141.
    [29] WANG X L,LONG Y J,WANG Q L,et al.. Reduced state carbon dots as both reductant and stabilizer for the synthesis of gold nanoparticles [J]. Carbon, 2013,64:499-506.
    [30] CHEN Q Y,WANG Y F,WANG Y W,et al.. Nitrogen-doped carbon quantum dots/Ag3PO4 complex photocatalysts with enhanced visible light driven photocatalytic activity and stability [J]. J. Colloid Interface Sci., 2017,491:238-245.
    [31] LIU R L,WU D Q,LIU S H,et al.. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers [J]. Angew. Chem. Int. Ed. Engl., 2009,48(25):4598-4601.
    [32] 于淑娟,汪丰,罗振静,等. 壳聚糖基聚合物点荧光材料的合成及其对纸张的抗紫外老化性能 [J]. 发光学报, 2017,38(11):1443-1449. YU S J,WANG F,LUO Z J,et al.. Synthesis of chitosan-based polymer carbon dots fluorescent materials and their UV aging resistance properties for paper [J]. Chin. J. Lumin., 2017,38(11):1443-1449. (in Chinese)
    [33] 王霞,吴文承,袁俊超,等. 微波原位法制备碳点/壳聚糖荧光复合物及其应用研究 [J]. 高分子学报, 2016(2):226-233. WU X,WU W C,YUAN J C,et al.. In situ construction of fluorescent carbon dots/chitosan composites with straightforward applications [J]. Acta Polym. Sinica, 2016(2):226-233. (in Chinese)
    [34] YANG Y H,CUI J H,ZHENG M T,et al.. One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan [J]. Chem. Commun., 2012,48(3):380-382.
    [35] TAN M Q,ZHANG L X,TANG R,et al.. Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source [J]. Talanta, 2013,115:950-956.
    [36] WANG C X,LIN H H,XU Z Z,et al.. Tunable carbon-dot-based dual-emission fluorescent nanohybrids for ratiometric optical thermometry in living cells [J]. ACS Appl. Mater. Interfaces, 2016,8(10):6621-6628.
    [37] LIANG Q,WANG Y L,LIN F C,et al.. A facile microwave-hydrothermal synthesis of fluorescent carbon quantum dots from bamboo tar and their application [J]. Anal. Methods, 2017,9(24):3675-3681.
    [38] RAY S C,SAHA A,JANA N R,et al.. Fluorescent carbon nanoparticles:synthesis,characterization,and bioimaging application [J]. J. Phys. Chem. C, 2009,113(43):18546-18551.
    [39] 王景霞,童刚生,刘涛,等. 一种单光子/双光子无定形碳点的制备及生物应用:中国,CN104386665A [P]. 2015-03-04. WANG J X,TONG G S,LIU T,et al.. Preparation method and bioapplication of single photon/double photon amorphous carbon dot:China,CN104386665A [P]. 2015-03-04. (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700