用户名: 密码: 验证码:
传热传质耦合影响的水中气泡上浮特性研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Floating Characteristics of Bubbles in Water Considering the Coupling Effects of Heat and Mass Transfer
  • 作者:金良安 ; 何升阳 ; 张志友 ; 苑志江
  • 英文作者:JIN Liang-An;HE Sheng-Yang;ZHANG Zhi-You;YUAN Zhi-Jiang;Dept.of Navigation, Dalian Naval Academy;
  • 关键词:高温气泡 ; 传热 ; 传质 ; 气泡半径 ; 上浮速度
  • 英文关键词:superheated bubble;;heat transfer;;mass transfer;;bubble radius;;rising velocity
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:海军大连舰艇学院航海系;
  • 出版日期:2019-05-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:海军国防预研课题(No.401040301)
  • 语种:中文;
  • 页:GCRB201905026
  • 页数:8
  • CN:05
  • ISSN:11-2091/O4
  • 分类号:185-192
摘要
针对海水密度人工跃变技术中的气泡上浮过程,分别建立气泡传热、传质及其速度、半径等各微分方程,进而构建水中高温气泡运动的耦合模型,数值模拟得出不同大小气泡运动的两个结论:一是在气泡上浮初期,气泡温度急剧降低,半径减小而速度升高,且都分别呈先快速后平缓的规律;气泡初始半径越大,其平均热流密度变化幅度、温度下降速率与半径减小趋势都将越缓慢,而速度升高趋势则更显著。二是当气泡温度降至液温后,气泡近似作匀加速运动,半径稳定、缓慢增大,而初始半径越大的气泡,其加速度更大并更快到达水面。经验证该模型能够有效模拟水中高温气泡的上浮过程及其特征规律,为制备合适气泡群,应用于海水密度人工跃变技术研究提供理论指导.
        In consider of the bubble floating process of the artificial pycnocline techniques, the differential equations of heat and mass transfer, velocity and radius are deduced, respectively. A coupling motion model is then developed for the superheated bubble. Two provable characteristics of the rising bubble with different sizes are concluded by numerical simulation. Firstly, bubbles are sharply cooled down during the initial rising period, which leads to the radius reduction and the increase of velocity with both first quick back slow trend. Moreover, for a larger initial radius, the rate of decrease of bubble average heat flux, temperature and radius are slower with the velocity more obviously. Secondly, after cooling down to the liquid temperature, bubbles will approximately conform a uniformly accelerated motion with the radius steadily and slowly increasing. Bubbles with larger initial sizes can reach the liquid surface faster for higher accelerometer. The model is successfully validated in the superheated bubble floatation process and characteristics, which is a theoretical basis of bubble formation and artificial pycnocline techniques.
引文
[1] FU Huiping, WAN Pengcheng. Numerical Simulation on Ship Bubbly Wake[J]. Journal of Marine Science and Application, 2011, 10(4):413-418
    [2]高洪涛,徐洪浩,孟龙,等.两级溴化锂气泡泵的泵起时间及其影响因素的实验研究[J].工程热物理学报,2014, 35(10):1910-1913GAO Hongtao, XU Honghao, MENG Long. Experimental Study on the Pump-up Time of Double-stage Bubble Pump and Its Influencing Factors[J]. Journal of Engineering Thermophysics, 2014, 35(10):1910-1913
    [3]欧阳的华.烟火药水下燃烧高温粒子与水作用的气泡动力学模型[J].含能材料,2013, 21(4):460-463OUYANG Dihua. Dynamic Model of Bubble Induced by the Interaction Between Pyrotechnic Composition Combustion Particles and Water[J]. Chinese Journal of Energetic Materials, 2013, 21(4):460-463
    [4]海军司令部.海军高技术知识教材[M].北京:海军司令部,1997Naval Command. Naval High-tech Knowledge Textbook[M]. Beijing:Naval Command, 1997
    [5] HUA Jinsong, LOU Jing. Numerical Simulation of Bubble Rising in Viscous Liquid[J]. Journal of Computational Physics, 2007, 222(2):769-795
    [6] Campos FB, Lage PLC. Simultaneous Heat and Mass Transfer During the Ascension of Superheated Bubbles[J]. International.Journal of Heat and Mass Transfer, 2000,43(2):179-189
    [7]陶烨晟,王立锋,叶文华,等.任意Atwood数RayleighTaylor和Richtmyer-Meshkov不稳定性气泡速度研究[J].物理学报,2012, 61(7):314-320TAO Yesheng, WANG Lifeng, YE Wenhhua, et al.The Bubble Velocity Research of Rayleigh-Taylor and Richtmyer-Meshkov Instabilities at Arbitrary Atwood Numbers[J]. Acta Physica Sinica, 2012, 61(7):314-320
    [8]谷芳,吴华杰,崔国起.过冷流动沸腾气泡生成状态的可视化实验研究[J].工程热物理学报,2016, 37(11):2417-2423GU Fang, WU Huajie, CUI Guoqi. Visualization Experiment for Bubble Generation of Subcooled Flow Boiling[J]. Journal of Engineering Thermophysics, 2016, 37(11):2417-2423
    [9]戴干策,陈敏恒.化工流体力学[M].北京:化学工业出版社,1988:256, 276, 374DAI Gance, CHEN Minheng. Chemical Engineering Fluid Mechanics[M]. Beijing:Chemical Industry Press, 1988:256, 276, 374
    [10]田恒斗,金良安,迟卫,等.Basset力对液体中易溶性气泡运动的影响[J].力学学报,2011,43(4):680-687TIAN Hengdou, JIN Liang'an, CHI Wei, et al. Impact of Basset Force on the Movement of Soluble Bubble in Fluid[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(4):680-687
    [11] Yoshida K, Fujikawa T, and Watanabe Y. Experimental Investigation on Reversal of Secondary Bjerknes Force Between Two Bubbles in Ultrasonic Standing Wave[J].The Journal of the Acoustical Society of America, 2011,130(1):135-144
    [12] ZHANG Aman, NI Baoyu. Influences of Different Forces on the Bubble Entrainment into a Stationary Gaussian Vortex[J]. Science China Physics, Mechanics and Astronomy, 2013, 56(11):2162-2169
    [13] Schiller L, Naumann Z. A Drag Coefficient Correlation[J].Z Ver Deutsch Ing, 1935, 77:318-320
    [14] Tomiyama A, Kataoka I, Zun I, et al. Drag Coefficients of Single Bubbles under Normal and Micro Gravity Conditions[J]. JSME Int J Ser B, Fluids Thermal Eng, 1998,41(2):472-479
    [15]田恒斗,金良安,丁兆红,等.液体中气泡上浮与传质过程的耦合模型[J].化工学报,2010, 61(1):15-21TIAN Hengdou, JIN Liang'an, DING Zhaohong, et al.Coupling Model for Bubble Rise and Mass Transfer Process in Liquid[J]. Journal of the Chemical Industry and Engineering Society of China, 2010, 61(1):15-21
    [16] WU Mingming. Experimental Studies on the Shape and Path of Small Air Bubbles Rising in Clean Water[J].Physics of Fluids, 2002, 14(7):49-52

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700