用户名: 密码: 验证码:
Quantum light sources from semiconductor
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantum light sources from semiconductor
  • 作者:Disheng ; Chen ; Weibo ; Gao
  • 英文作者:Disheng Chen;Weibo Gao;Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University;The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University;
  • 中文刊名:BDTX
  • 英文刊名:半导体学报(英文版)
  • 机构:Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University;The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University;
  • 出版日期:2019-07-15
  • 出版单位:Journal of Semiconductors
  • 年:2019
  • 期:v.40
  • 语种:英文;
  • 页:BDTX201907005
  • 页数:4
  • CN:07
  • ISSN:11-5781/TN
  • 分类号:7-10
摘要
<正>Semiconductor provides a physics-rich environment to host various quantum light sources applicable for quantum information processing. These light sources are capable of deterministic generation of non-classical photon streams
        
引文
[1]Aharonovich I,Englund D,Toth M.Solid-state single-photon emitters.Nat Photonics,2016,10,631
    [2]Kuhlmann A V,Prechtel J H,Houel J,et al.Transform-limited single photons from a single quantum dot.Nat Commun,2015,6,8204
    [3]Michler P,Kiraz A,Becher C,et al.A quantum dot single-photon turnstile device.Science,2000,290,2282
    [4]Santori C,Pelton M,Solomon G,et al.Triggered single photons from a quantum dot.Phys Rev Lett,2001,86,1502
    [5]Ding X,He Y,Duan Z C,et al.On-demand single photons with high extraction efficiency and near-unity indistinguishability from a resonantly driven quantum dot in a micropillar.Phys Rev Lett,2016,116,020401
    [6]Somaschi N,Giesz V,Santis L D,et al.Near-optimal single-photon sources in the solid state.Nat Photon,2016,10,340
    [7]Nowak A K,Portalupi S L,Giesz V,et al.Deterministic and electrically tunable bright single-photon source.Nat Commun,2014,5,3240
    [8]Heindel T,Schneider C,Lermer M,et al.Electrically driven quantum dot-micropillar single photon source with 34%overall efficiency.Appl Phys Lett,2010,96,011107
    [9]Nilsson J,Stevenson R M,Chan K H A,et al.Quantum teleportation using a light-emitting diode.Nat Photon,2013,7,311
    [10]Muller M,Bounouar S,Jons K D,et al.On-demand generation of indistinguishable polarization-entangled photon pairs.Nat Photon,2014,8,224
    [11]Keil R,Zopf M,Chen Y,et al.Solid-state ensemble of highly entangled photon sources at rubidium atomic transitions.Nat Commun,2017,8,15501
    [12]Huber D,Reindl M,Huo Y,et al.Highly indistinguishable and strongly entangled photons from symmetric GaAs quantum dots.Nat Commun,2017,8,15506
    [13]Chen Y,Zhang J,Zopf M,et al.Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots.Nat Commun,2016,7,10387
    [14]Huber D,Reindl M,Covre da Silva S F,et al.Strain-tunable GaAs quantum dot:a nearly dephasing-free source of entangled photon pairs on demand.Phys Rev Lett,2018,121,033902
    [15]Wang H,Hu H,Chung T H,et al.On-demand semiconductor source of entangled photons which simultaneously has high fidelity,efficiency,and indistinguishability.Phys Rev Lett,2019,122,113602
    [16]Chen Y,Zopf M,Keil R,et al.Highly-efficient extraction of entangled photons from quantum dots using a broadband optical antenna.Nat Commun,2018,9,2994
    [17]Zaitsev A M.Optical properties of diamond:a data handbook.Berlin:Springer-Verlag,2001
    [18]Tamarat P,Gaebel T,Rabeau J R,et al.Stark shift control of single optical centers in diamond.Phys Rev Lett,2006,97,083002
    [19]Fu K M C,Santori C,Barclay P E,et al.Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond.Phys Rev Lett,2009,103,256404
    [20]Jelezko F,Popa I,Gruber A,et al.Single spin states in a defect center resolved by optical spectroscopy.Appl Phys Lett,2002,81,2160
    [21]Doherty M W,Manson N B,Delaney P,et al.The nitrogen-vacancy colour centre in diamond.Phys Rep,2013,528,1
    [22]Hepp C,Muller T,Waselowski V,et al.Electronic structure of the silicon vacancy color center in diamond.Phys Rev Lett,2014,112,036405
    [23]Rogers L J,Jahnke K D,Teraji T,et al.Multiple intrinsically identical single-photon emitters in the solid state.Nat Commun,2014,5,4739
    [24]Sipahigil A,Jahnke K D,Rogers L J,et al.Indistinguishable photons from separated silicon-vacancy centers in diamond.Phys Rev Lett,2014,113,113602
    [25]Neu E,Fischer M,Gsell S,et al.Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium.Phys Rev B,2011,84,205211
    [26]Neu E,Fischer M,Gsell S,et al.Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxia nanodiamonds on iridium.Phys Rev B,2011,84,205211
    [27]Dietrich A,Jahnke K D,Binder J M,et al.Isotopically varying spectral features of silicon-vacancy in diamond.New J Phys,2014,16,113019
    [28]Rogers L J,Jahnke K D,Doherty M W,et al.Electronic structure of the negatively charged silicon-vacancy center in diamond.Phys Rev B,2014,89,235101
    [29]Zhang J L,Ishiwata H,Babinec T M,et al.Hybrid group IV nanophotonic structures incorporating diamond silicon-vacancy color centers.Nano Lett,2016,16,212
    [30]Sipahigil A,Evans R E,Sukachev D D,et al.An integrated diamond nanophotonics platform for quantum-optical networks.Science,2016,354,847
    [31]Schroder T,Trusheim M E,Walsh M,et al.Scalable focused ion beam creation of nearly lifetime-limited single quantum emitters in diamond nanostructures.Nat Commun,2017,8,15376
    [32]Riedrich-Moller J,Arend C,Pauly C,et al.Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond.Nano Lett,2014,14,5281
    [33]Gil B.Low-dimensional nitride semiconductors.Oxford:Oxford University Press,2002
    [34]Zhou Y,Wang Z,Rasmita A,et al.Room temperature solid-state quantum emitters in the telecom range.Sci Adv,2018,4,eaar358
    [35]Berhane A M,Jeong K Y,Bodrog Z,et al.Bright room-temperature single-photon emission from defects in gallium nitride.Adv Mater,2017,29,1605092
    [36]Berhane A M,Jeong K Y,Bradac C,et al.Photophysics of GaNsingle-photon emitters in the visible spectral range.Phys Rev B,2018,97,165202
    [37]Nguyen M,Zhu T,Kianinia M,et al.Effects of microstructure and growth conditions on quantum emitters in gallium nitride.arXiv:1811.11914,2018
    [38]Castelletto S,Johnson B C,Ivády V,et al.A silicon carbide roomtemperature single-photon source.Nat Mater,2014,13,151
    [39]Widmann M,Lee S Y,Rendler T,et al.Coherent control of single spins in silicon carbide at room temperature.Nat Mater,2015,14,164
    [40]Castelletto S,Johnson B C,Boretti A.Quantum effects in silicon carbide hold promise for novel integrated devices and sensors.Adv Opt Mater,2013,1,609
    [41]Lohrmann A,Johnson B C,McCallum J C,et al.A review on single photon sources in silicon carbide.Rep Prog Phys,2017,80,034502
    [42]Chakraborty C,Kinnischtzke L,Goodfellow K M,et al.Voltagecontrolled quantum light from an atomically thin semiconductor.Nat Nano,2015,10,507
    [43]He Y M,Clark G,Schaibley J R,et al.Single quantum emitters in monolayer semiconductors.Nat Nanotechnol,2015,10,497
    [44]Koperski M,Nogajewski K,Arora A,et al.Single photon emitters in exfoliated WSe2 structures.Nat Nanotechnol,2015,10,503
    [45]Srivastava A,Sidler M,Allain A V,et al.Optically active quantum dots in monolayer WSe2.Nat Nanotechnol,2015,10,491
    [46]Tonndorf P,Schmidt R,Schneider R,et al.Single-photon emission from localized excitons in an atomically thin semiconductor.Optica,2015,2,347
    [47]Branny A,Wang G,Kumar S,et al.Discrete quantum dot like emitters in monolayer MoSe2:Spatial mapping,magneto-optics,and charge tuning.Appl Phys Lett,2016,108,142101
    [48]Chakraborty C,Goodfellow K M,Vamivakas A N.Localized emission from defects in MoSe2 layers.Opt Mater Express,2016,6,2081
    [49]Palacios-Berraquero C,Kara D M,Montblanch A R P,et al.Largescale quantum-emitter arrays in atomically thin semiconductors.Nat Commun,2017,8,15093
    [50]Tonndorf P,Schwarz S,Kern J,et al.Single-photon emitters in GaSe.2D Mater,2017,4,021010
    [51]Toth M,Aharonovich I.Single photon sources in atomically thin materials.Ann Rev Phys Chem,2019,70,123
    [52]Tran T T,Bray K,Ford M J,et al.Quantum emission from hexagonal boron nitride monolayers.Nat Nanotechnol,2016,11,37
    [53]Tran T T,Kianinia M,Nguyen M,et al.Resonant excitation of quantum emitters in hexagonal boron nitride.ACS Photonics,2018,5,295
    [54]Cassabois G,Valvin P,Gil B.Hexagonal boron nitride is an indirect bandgap semiconductor.Nat Photonics,2016,10,262
    [55]Martinez L J,Pelini T,Waselowski V,et al.Efficient single photon emission from a high-purity hexagonal boron nitride crystal.Phys Rev B,2016,94,121405
    [56]Tran T T,Elbadawi C,Totonjian D,et al.Robust multicolor single photon emission from point defects in hexagonal boron nitride.ACS Nano,2016,10,7331
    [57]Dietrich A,Burk M,Steiger E S,et al.Observation of Fourier transform limited lines in hexagonal boron nitride.Phys Rev B,2018,98,081414
    [58]Dietrich A,Doherty M W,Aharonovich I,et al.Persistence of Fourier transform limited lines from a solid state quantum emitter in hexagonal boron nitride.arXiv:1903.02931,2019
    [59]Tawfik S A,Ali S,Fronzi M,et al.First-principles investigation of quantum emission from hBN defects.Nanoscale,2017,9,13575
    [60]Reimers J R,Sajid A,Kobayashi R,et al.Understanding and calibrating density-functional-theory calculations describing the energy and spectroscopy of defect sites in hexagonal boron nitride.J Chem Theory Comput,2018,14,1602
    [61]Abdi M,Chou J P,Gali A,et al.Color centers in hexagonal boron nitride monolayers:a group theory and ab initio analysis.ACSPhotonics,2018,5,1967
    [62]Gupta S,Yang J H,Yakobson B I.Two-level quantum systems in two-dimensional materials for single photon emission.Nano Lett,2019,19,408
    [63]He X,Htoon H,Doorn S K,et al.Carbon nanotubes as emerging quantum-light sources.Nat Mater,2018,17,663
    [64]Ghosh S,Bachilo S M,Simonette R A,et al.Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes.Science,2010,330,1656
    [65]Piao Y,Meany B,Powell L R,et al.Brightening of carbon nanotube photoluminescence through the incorporation of sp3 defects.Nat Chem,2013,5,840
    [66]Hartmann N F,Yalcin S E,Adamska L,et al.Photoluminescence imaging of solitary dopant sites in covalently doped single-wall carbon nanotubes.Nanoscale,2015,7,20521
    [67]He X,Hartmann N F,Ma X,et al.Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes.Nat Photonics,2017,11,577
    [68]Ma X,Hartmann N F,Baldwin J K S,et al.Room-temperature single-photon generation from solitary dopants of carbon nanotubes.Nat Nanotechnol,2015,10,671
    [69]Pyatkov F,Futterling V,Khasminskaya S,et al.Cavity-enhanced light emission from electrically driven carbon nanotubes.Nat Photonics,2016,10,420
    [70]Khasminskaya S,Pyatkov F,Slowik K,et al.Fully integrated quantum photonic circuit with an electrically driven light source.Nat Photonics,2016,10,727
    [71]Graf A,Held M,Zakharko Y,et al.Electrical pumping and tuning of exciton-polaritons in carbon nanotube microcavities.Nat Mater,2017,16,911
    [72]Sarpkaya I,Zhang Z,Walden-Newman W,et al.Prolonged spontaneous emission and dephasing of localized excitons in airbridged carbon nanotubes.Nat Commun,2013,4,2152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700