用户名: 密码: 验证码:
一次甘肃天水强冰雹的雷达回波特征及成因分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on the Characteristic of Radar Echo and the Causes of a Strong Hail in Tianshui City of Gansu Province
  • 作者:王研峰 ; 黄武斌 ; 王聚杰 ; 黄玉霞 ; 段伯隆 ; 杨勇
  • 英文作者:WANG Yanfeng;HUANG Wubin;WANG Jujie;HUANG Yuxia;DUAN Bolong;YANG Yong;Gansu Weather Modification Office;Key Laboratory for Cloud Physics of China Meteorological Administration;Lanzhou Center Meteorological Observation;College of Management Engineering,Nanjing Univercity of Information and Science Technology;Collaborative Innovation center on Forecast and Evaluation of Meteorological Disasters,Nanjing Univercity of Information and Science Technology;
  • 关键词:冰雹 ; 雷达回波演变特征 ; VIL值 ; 成因
  • 英文关键词:Hail;;radar echo evolution characteristics;;VIL value;;the causes
  • 中文刊名:GYQX
  • 英文刊名:Plateau Meteorology
  • 机构:甘肃省人工影响天气办公室;中国气象局云雾物理环境重点开放实验室;兰州中心气象台;南京信息工程大学管理工程学院;南京信息工程大学气象灾害预报预警与评估协同创新中心;
  • 出版日期:2019-04-28
  • 出版单位:高原气象
  • 年:2019
  • 期:v.38
  • 基金:中国气象局预报员专项(CMAYBY2017-077);中国气象局云雾物理环境重点开放实验室开放课题(2018Z01609);; 国家自然科学基金项目(71501101);; 江苏省自然科学基金青年基金项目(BK20150928);; 江苏高校哲学社会科学研究项目(2015SJB063)
  • 语种:中文;
  • 页:GYQX201902013
  • 页数:9
  • CN:02
  • ISSN:62-1061/P
  • 分类号:144-152
摘要
利用常规气象观测资料、天气雷达以及NCEP FNL再分析资料,对2017年5月18日下午天水一次强冰雹天气的雷达回波结构演变特征和成因进行了详细分析。结果表明:(1)降雹对流单体低层反射率因子呈现出明显的"V"型缺口,最大回波强度出现在低层,为63 d Bz。反射率因子垂直剖面呈对流单体有界弱回波区和其上的回波悬垂,相应的径向速度垂直剖面呈中低层径向风有明显的辐合特征,高层转为辐散,尤其风暴顶附近。(2)对流单体发生在对流层中层河套地区至甘肃河东东部低涡及其附近冷区和河西中部高压脊及其东北部冷池和低层甘肃与宁夏交界处冷性低涡分别为干冷空气入侵和暖湿气流辐合抬升提供有利条件的环境背景下;较高CAPE值和低CIN值有利于强对流天气发生;对流层中低层深厚的上升气流,中层下沉气流和0℃层以上强气流上升有利于对流单体水汽输送以及生成、发展和维持;距地高度2600~2900 m的0℃层为大冰雹落地提供了环境条件。(3)冰雹临近预警的雷达参数化指标为最大反射率因子达55 d Bz,VIL最大值和VIL密度分别达25 kg·m-2和2. 3 g·m-3。
        Using normal surface meteorological data、weather radar data and NCEP FNL reanalysis datasets on18 May 2017,the radar echo structure evolution characteristics and the causes of a strong hail in Tianshui city of Gansu province was analyzed. The results showed that:(1) The low-level reflectivity factor of the convective cells showed obvious " V" gap,the strongest echo appears in the low-level and the value got to 63 dBz. The vertical cross-sections of reflectivity factors showed typical BWER,overhanging echo. The corresponding the vertical cross-sections of radial velocity showed low-level radial wind with obvious characteristic of convergence and high-level to divergence,especially at storm near the top.(2) The background conditions of the convective cells occuring was lowvortex and its adjacent cold area from Hetao region to Hedong east and high pressure ridges and cold pool of northeastern in middle of Hexi in the centre of the troposphere,a cold vortex at the border of Gansu and Ningxia provide favorable condition for high-level dry and cold air coming and low-level updrafts pushed by the warm moist southerly flowin the lower troposphere,respectively. High values of the CAPE and lowvalues of the CIN are conducive to strong convection. At the same time the configuration of the deep updrafts airflowin the center and lower troposphere and sinking airflowin the centre of the troposphere,strong convective updrafts above 0 ℃ layer in favor of water vapor transport,generating,develop and maintaining of the convective cells.0 ℃ layer height apart from above ground is about 2600 ~ 2900 meters,which provides environmental conditions for large hail floor.(3) Maximum reflectivity reaches 55 dBz,VIL value over 25 kg·m-2 and VIL density over2. 3 kg·m-2 can be taken as early warning radar parameterized indicators of hail.
引文
Ambum S A,Wolf P L,1997.VIL density as a hail indicator[J].Weather and Forcasting,12(3):473-478.
    Brow ning K A,Ludlam F H,M acklin W C,1963.The density and structure of hailstones[J].Quarterly Journal of the Royal M eteorological Society,89:75-84
    Changnon S A,Changnon D,2000.Long-term fluctuations in hail incidences in the United States[J].Journal of Climate,13(3):658-664.
    Colby F P,1984.Convective inhibition as a predictor of convenction during AVE-SESAM E[J].M onthly Weather Review,112:2239-2252.
    Lu D J,Cheng Z R,Yuan Y,et al,2015.Analysis on radar echo characteristics of hail clouds in spring and summer of Anhui province[J].Meteorological Monthly,41(9):1104-1109.
    Knight C A,Knight N C,1971.Hails tones[J].Scientific American,224(4):40-47.
    Richard L,Thomposn R E,2000.An overview of environmental conditions and forecast implications of 3 M ay 1999 Tornado outbrek[J].Weather and Forecasting,15(12):682-699.
    曹艳察,田付友,郑永光,等,2018.中国两级阶梯地势区域冰雹天气的环境物理量统计特征[J].高原气象,37(1):185-196.DOI:10.7522/j.issn.1000-0534.2017.00044.
    陈秋萍,陈齐川,冯晋勤,等,2015.“2012·4·11”两个强降雹超级单体特征分析[J].气象,41(1):25-33.
    东高红,吴涛,2007.垂直液态含水量在地面大风预报中的应用[J].气象科技,35(6):877-881.
    方标,严小冬,方可,等,2014.贵州铜仁市春季冰雹天气特征及防雹预警阀值[J].贵州农业科学,42(3):212-218.
    胡胜,罗聪,张羽,等,2015.广东大冰雹风暴单体的多普勒天气雷达特征[J].应用气象学报,26(1):57-65.
    黄晓龙,高丽,2016.2014年3.19台州冰雹过程中尺度分析[J].气象,42(6):696-708.
    黄玉霞,王宝鉴,王研峰,等,2017.甘肃省夏季暴雨日数特征及其与大气环流关系[J].高原气象,36(1):183-194.DOI:10.7522/j.issn.1000-0534.2015.00118.
    刘黎平,徐宝祥,王致君,等,1992.用C波段双线偏振雷达研究冰雹云[J].大气科学,16(3):370-376.
    鲁德金,陈钟荣,袁野,等,2015.安徽地区春夏季冰雹云雷达回波特征分析[J].气象,41(9):1104-1109.
    路亚奇,曹彦超,张峰,等,2016.陇东冰雹天气特征分析及预报预警[J].高原气象,35(6):1565-1576.DOI:10.7522/j.issn.1000-0534.2015.00116.
    吕晓娜,2017.河南一次强对流天气潜势、触发与演变分析[J].高原气象,36(1):195-206.DOI:10.7522/j.issn.1000-0534.2016.00023.
    覃靖,潘海,刘蕾,2017.柳州“4·09”致灾冰雹的超级单体风暴过程分析[J].气象,43(6):745-755.
    陶岚,戴建华,孙敏,2016.一次雷暴单体相互作用与中气旋的演变过程分析[J]气象,42(1):14-25.
    王令,康玉霞,焦热光,等,2004.北京地区强对流天气雷达回波特征[J].气象,30(7):31-35.
    王晓芳,赖安伟,王志斌,2014.一个长生命期准静止中尺度对流系统的观测特征及其持续的环境条件[J].大气科学,38(3):421-437.
    伍志方,张春良,张沛源,2001.一次强对流天气的多普勒特征分析[J].高原气象,20(2):202-207.
    许东蓓,苟尚,肖玮,等,2018.两种类型短时强降水形成机理对比分析-以甘肃两次短时强降水过程为例[J].高原气象,37(2):524-534.DOI:10.7522/j.issn.1000-0534.2017.00056.
    张正国,汤达章,邹光源,等,2012.VIL产品在广西冰雹云识别和人工防雹中的应用[J].热带地理,32(1):50-53.
    郑媛媛,俞小鼎,方翀,等,2004a.一次典型超级单体风暴的多普勒天气雷达观测分析[J].气象学报,62(3):317-328.
    郑媛媛,俞小鼎,方翀,等,2004b.2003年7月8日安徽系列龙卷的新一代天气雷达分析[J].气象,30(1):38-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700