用户名: 密码: 验证码:
北太平洋风应力与流场联合EOF的主模态分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Main Modal Analysis of Combined EOF Diagnosis to Wind Stress and Flow Field Anomalies in North Pacific
  • 作者:路凯程 ; 于杰 ; 吕庆平 ; 张铭
  • 英文作者:LU Kai-cheng;YU Jie;L Qing-ping;ZHANG Ming;Unit 61741,P.L.A;Laboratory of Atmospheric Circulation and Short-range Climate Forecast,College of Meteorology and Oceanography ,P.L.A.University of Science and Technology;Unit 65301,P.L.A;East Sea Fleet,Oceanography and Meteorology Center;
  • 关键词:北太平洋 ; 风应力异常 ; 海洋流场异常 ; EOF分析 ; PDO
  • 英文关键词:North Pacific;;wind stress anomalies;;ocean current anomalies;;combined EOF;;PDO
  • 中文刊名:HBHH
  • 英文刊名:Advances in Marine Science
  • 机构:解放军61741部队;解放军理工大学气象海洋学院大气环流与短期气候预测实验室;解放军65301部队;解放军东海舰队司令部海洋水文气象中心;
  • 出版日期:2014-10-15
  • 出版单位:海洋科学进展
  • 年:2014
  • 期:v.32
  • 基金:国家重点基础研究发展计划项目——西北太平洋海洋多尺度变化过程、机理及可预报性(2013CB956203)
  • 语种:中文;
  • 页:HBHH201404004
  • 页数:15
  • CN:04
  • ISSN:37-1387/P
  • 分类号:35-49
摘要
采用了SODA资料,将海面风应力场与大洋各层流场看作一个整体做了赤道外北太平洋风应力和流场异常的联合EOF分析,此时风应力场与各层流场有相同的时间系数,这样就可揭示海气耦合的结构和演变,这是该方法的特点和优点。得到的主要结论有:诊断得到的主模态的风应力异常体现了北太平洋大气活动中心的异常,两者关系密切;在冬、春、秋三季均表征为阿留申低压的异常,在夏季则表征为副热带高压的异常。该主模态的风应力和流场异常均是PDO模态在其上的体现,且前者处海气相互作用中矛盾的主要方面,后者处次要方面,前者起着主动作用,后者则处被动状态。主模态在四季均有明显的年际变化和年代际变化;对北太平洋风场和上层流场而言,年际变化反映了ENSO的影响,而约20a的年代际变化则反映了太平洋年代际振荡(PDO)的影响。主模态中北太平洋海盆尺度的风应力异常、大洋环流异常和上层海温的动力异常这三者具有紧密的联系,这三者的连锁作用则造成了北太平洋SSTA的PDO模态;而在此大洋环流异常则起着关键中介作用。主模态的风应力异常与黑潮系统流场的异常有紧密联系;对于明显的正(负)异常,冬、夏两季135°E以东的黑潮都偏强(弱),黑潮续流则偏弱(强);对于黑潮以南的回流涡旋,冬季则偏强(弱),夏季则偏弱(强);而ENSO和PDO对黑潮流场系统的异常均有明显影响。
        In this paper,a combined EOF method has been conducted for sea surface wind stress field and ocean surface current field over North Pacific region with the SODA reanalysis dataset.The advantage of combined EOF methodology lies in that different EOF modes share the same time coefficient,which are able to reveal the structure and evolution of air-ocean coupling feature.Our work discloses that the sea surface wind stress anomalies of the dominant mode from EOF is closely related with the anomalous activities centre over North Pacific area.It is also showed the Aleutian low anomalies stay in winter,spring,and autumn seasons and the subtropical anticyclone anomalies occur in the summer.The sea surface wind stress and surface current anomalies of the first mode are reflections of Pacific Decadal Oscillation(PDO)mode.There are obvious interannual and interdecadal variations for the leading mode.For wind field and the upper current field in North Pacific,the interannual variation indicates the influence from ENSO event,whereas the interdecadal variation reveals the PDO signal.The North Pacific wind stress anomalies of the leading mode,ocean circulation anomaly and the upper ocean temperature anomalies are closely related with other.Although PDO mode of North Pacific Sea Surface Temperature anomalies is important for the coupling,ocean circulation plays a significantrole.The wind stress anomalies of the leading mode are closely associated with the Kuroshio system.For the obvious positive(negative)anomalies,Kuroshio in the east of 135°E is strong(weak)in winter and summer,whereas the Kuroshio extension is weak(strong).For the recirculation gyre of the south of Kuroshio,strong(weak)in winter and weak(strong)in summer.The Kuroshio flow system is also significantly influenced by ENSO and PDO.
引文
[1]WANG H,WANG Q Q.Relationship between summer precipitation anomalies in the huaihe nasin and SSTA over the North Pacific[J].Journal of Nanjing Institute of Meteorology,2002,25(1):45-54.王慧,王谦谦.淮河流域夏季降水异常与北太平洋海温异常的关系[J].南京气象学院学报,2002,25(1):45-54.
    [2]LI F,HE J H.The Decadal change of the interaction between northern pacific SSTA and east asian summer monsoon[J].Journal of Tropical Meteorology,2000,16(3):260-271.李峰,何金海.北太平洋海温异常与东亚夏季风相互作用的年代际变化[J].热带气象学报,2000,16(3):260-271.
    [3]PIERINI S.A Kuroshio extension system model study:decadal chaotic self-sustained oscillations[J].Journal of Physical Oceanography,2006,36(8):1605-1625.
    [4]KATHARYNA A.CARUSO M J,SINGH S.Observaitions of atmosphere/ocean coupling in western boundary currents[J].Journal of Geophysical Research-All Series,1996,101(c3):6295-6312.
    [5]CHEN,S M,QIU B,HACKER P.Profiling float measurements of the recirculation gyre south of the kuroshio extension in May to November 2004[J].Journal of Geophysical Research:Oceans,2007,112(5):1978-2012.
    [6]MANTUA N J,HARE S R,ZHANG Y,et al.A Pacific interdecadal climate oscillation with impacts on salmon production[J].Bulletin of the American Meteorological Society,1997,78(6):1069-1079.
    [7]ZHANG Y,NORRIS J R,WALLACE J M.Seasonality of large scale atmosphere ocean interaction over the North Pacific[J].Journal of Climate,1998,11(10):2473-2481.
    [8]ALEXANDER M.Extratropical air-sea interaction,SST variability and the Pacific Decadal Oscillation[M]∥SUN D,BRYAN F.Climate dynamics:why does climate vary?Washington D C:Am.Geophys.Uninon,2010.
    [9]LIU Z.Dynamics of interdecadal climate variability:an historical perspective[J].Journal of Climate,2012,25:1963-1995.
    [10]MANTUA N J,HARE S R.The Pacific decadal oscillation[J].Journal of Oceanography,2002,58:(1):35-44.
    [11]CEBALLOS L,DI LORENZO E,HOYOS C D,et al.North Pacific gyre oscillation synchronizes climate fluctuations in the eastern and western boundary systems[J].Journal of Climate,2009,22(19):5163-5174.
    [12]CHHAK K,DI LORENZO E,SCHNEIDER N.Forcing of low-frequency ocean variability in the Northeast Pacific[J].Journal of Climate,2009,22(5):1255-1276.
    [13]TRENBERTH K E,HURRELL J W.Decadal climate variations in the Pacific,national research council[M]∥Natural Climate Variability on Decade-to-Century Time Scales.Washington D C:National Academy Press,1995.
    [14]SCHNEIDER N,CORNUELLE B D.The forcing of the Pacific decadal oscillation[J].Journal of Climate,2005,18(21):4355-4373.
    [15]CHEN,S M,QIU B.Eddy-mean flow interaction in the decadally modulating Kuroshio Extension system[J].Deep-Sea ResearchⅡ,2010,57(13-14):1098-1110.
    [16]FURTADO J C,DI LORENZO E,SCHNEIDER N,et al.North Pacific decadal variability and climate change in the IPCC AR4models[J].Journal of Climate,2011,24(12):3049-3067.
    [17]Maryland University.Sipimple Ocean Data Assimilation[EB/OL].[2014-10-16〗http:∥cdc.cma.gov.cn/shuju/index3.jsp?tpcat=NAFP&dsid=NAFP_SODA_REA_MON_OCEAN.马里兰大学.全球简单海洋资料同化分析系统[EB/OL].[2014-10-16].http:∥cde.cma.gov.cn/shuju/index3.jsp?tpcat=NAFP&dsid=AFP_SODA_REA_MON_OCEAN.
    [18]HUANG J Y.Meteorological statistical analysis and prediction method[M].Beijing:China Meteorological Press,2000:135-139.黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社,2000:135-139.
    [19]ZENG Q C.Atmospheric infrared remote sensing principle[M].Beijing:Science Press,1974:160-166.曾庆存.大气红外遥感原理[M].北京:科学出版社,1974:160-166.
    [20]NORTH G R,BELL T L,CAHALAN R F,et al.Sampling errors in the estimation of empirical orthogonal function[J].Mon Wea Rev,1982,110:699-706.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700