用户名: 密码: 验证码:
纤维对短切碳纤维/AZ91D复合材料热变形行为和加工性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of fiber on the hot deformation behavior and workability of chopped carbon fiber/AZ91Dcomposites
  • 作者:方怀青 ; 王振军 ; 周金秋 ; 邱旭东 ; 蔡长春 ; 余欢
  • 英文作者:FANG Huaiqing;WANG Zhenjun;ZHOU Jinqiu;QIU Xudong;CAI Changchun;YU Huan;National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology,Nanchang Hangkong University;
  • 关键词:镁基复合材料 ; 塑性变形 ; 动态再结晶 ; 热加工图 ; 流变失稳
  • 英文关键词:magnesium matrix composites;;plastic deformation;;dynamic recrystallization;;hot processing map;;deformation instability
  • 中文刊名:FUHE
  • 英文刊名:Acta Materiae Compositae Sinica
  • 机构:南昌航空大学轻合金加工科学与技术国防重点学科实验室;
  • 出版日期:2018-09-15 11:07
  • 出版单位:复合材料学报
  • 年:2019
  • 期:v.36
  • 基金:国家自然科学基金(51765045;51365043);; 江西省自然科学基金(20171BAB201021;20171BAB206003);; 江西省教育厅科学技术研究基金(GJJ1607055)
  • 语种:中文;
  • 页:FUHE201906015
  • 页数:11
  • CN:06
  • ISSN:11-1801/TB
  • 分类号:144-154
摘要
采用等温压缩试验研究了不同碳纤维体积分数的镁基复合材料(CFs/AZ91D)和镁合金(AZ91D)在变形温度310~430℃、应变速率10~(-3)~10~(-1) s~(-1)范围内的塑性变形行为。根据实验结果建立了CFs/AZ91D和AZ91D的热加工图,分析了纤维对CFs/AZ91D塑性加工性能与变形机制的影响。结果表明:相比ZA91D,纤维在提高复合材料流动应力的同时促进了基体动态再结晶和应变软化,但纤维体积分数对流动应力与应变软化程度影响较小,CFs/AZ91D热变形时表现出比ZA91D更高的应变速率敏感指数和变形激活能;ZA91D热加工图不存在变形失稳区且其高温低速率区变形时的能量耗散效率大于30%,CFs/AZ91D高温低应变速率区变形时的能量耗散效率大于50%,此时纤维激励了基体合金动态再结晶而使复合材料表现出极高的能量耗散效率,但在低温高应变速率变形时,基体合金与纤维之间的界面开裂极易导致CFs/AZ91D出现塑性流变失稳行为。
        The plastic deformation behavior of magnesium alloy(AZ91D)and chopped carbon fiber(CFs)/AZ91D composites with different fiber volume fractions were investigated at the condition of 310-430℃ and 10~(-3)-10~(-1) s~(-1) using isothermal compression testing.According to the experimental results,the hot processing maps of AZ91 D and CFs/AZ91D were constructed to inspect the influence of fiber on the plastic workability and deformation mechanism of CFs/AZ91D composites.The results indicate that the addition of the fiber improves the flow stress as well as the dynamic recrystallization(DRX)and strain softening degree.Nevertheless,the fiber volume fraction has no significant impact on the flow stress and the strain softening degree.The strain rate sensitivity exponent and deformation activation energy of CFs/AZ91D composites are higher than that of AZ91D.It is found there is no deformation instability zone in the processing map of the AZ91D and the power dissipation efficiency exceeds 30% in the deformation safety zone.Due to the stimulation of fiber on the DRX in matrix alloy,the power dissipation efficiency of CFs/AZ91D composite is ultra-high,which exceeds 50%.At the condition of low temperature and high strain rate,the large deformation is liable to induce the interface debonding,which is responsible for the plastic deformation instability of CFs/AZ91 Dcomposites.
引文
[1]KHOSROSHAHI H K,SANIEE F F,ABEDI H R,Mechanical properties improvement of cast AZ80Mg alloy/nanoparticles composite via thermomechanical processing[J].Materials Science&Engineering A,2014,595:284-290.
    [2]武高辉.金属基复合材料发展的挑战与机遇[J].复合材料学报,2014,31(5):1228-1237.WU G H.Development challenge and opportunity of mental matrix composites[J].Acta Materiae Compositae Sinica,2014,31(5):1228-1237(in Chinese).
    [3]阮爱杰,马立群,潘安霞,等.镁基复合材料制备工艺研究进展[J].有色金属,2011,63(02):142-146.RUAN Aijie,MA Liqun,PAN Anxia,et al.Progress in preparation of magnesium matrix composites[J].Nonferrous Metals,2011,63(02):142-146(in Chinese).
    [4]ZHANG L,WANG Q,LIAO W,et al.Effects of cyclic extrusion and compression on the microstructure and mechanical properties of AZ91Dmagnesium composites reinforced by SiCnanoparticles[J].Materials Characterization,2017,126:17-27.
    [5]韩远飞,段宏强,吕维洁,等.非连续增强金属基复合材料剧烈塑性变形行为研究进展[J].复合材料学报,2015,32(1):1-12.HAN Y F,DUAN H Q,LV W J,et al.Research progress on severe plastic deformation behaviors of discontinuously reinforced metal matrix composites[J].Acta Materiae Compositae Sinica,2015,32(1):1-12(in Chinese).
    [6]常海,王金龙,郑明毅,等.通道角变形对搅拌铸造SiCp/AZ91复合材料显微组织与室温性能的影响[J].复合材料学报,2017,34(3):611-618.CHANG H,WANG J L,ZHENG M Y,et al.Effect of equal channel angular pressing on the microstructure evolution and mechanical property of SiCp/AZ91composite fabricated by stir-casting[J].Acta Materiae Compositae Sinica,2017,34(3):611-618(in Chinese).
    [7]WANG Z J,QI L H,ZHOU J M,et al.A constitutive model for predicting flow stress of Al18B4O33w/AZ91Dcomposite during hot compression and its validation[J].Computational Materials Science,2011,50(8):2422-2426.
    [8]王一丁,郑开宏,黎小辉.SiCp/AM60B镁基复合材料的高温压缩变形行为[J].材料研究与应用,2016,10(1):33-38.WANG Y D,ZHENG K H,LI X H.Hotcompression deformation behaviors of SiCp/AM60Bmagnesium matrix composite at elevated temperature[J].Materials Research and Application,2016,10(1):33-38(in Chinese).
    [9]QI L H,WANG Z J,ZHOU J M,et al.Constitutive behavior of Csf/AZ91Dcomposites compressed at elevated temperature and containing a small fraction of liquid[J].Composite Science and Technology,2011,71(7):955-61.
    [10]WANG Zhenjun,QI Lehua,WANG Gui,et al.Constitutive equation for the hot deformation behavior of Csf/AZ91Dcomposites and its validity for numerical simulation[J].Mechanics of Materials,2016,102:90-96.
    [11]ZHU Y P,JIN P P,ZHAO P T,et al.Hot deformation behavior of Mg2B2O5 whiskers reinforced AZ31B magnesium composite fabricated by stir-casting[J].Materials Science&Engineering A,2013,573:148-153.
    [12]KHOSROSHAHI H K,SANIEE F F,ABEDI H R,Mechanical properties improvement of cast AZ80Mg alloy/nanoparticles composite via thermomechanical processing[J].Materials Science&Engineering A,2014,595:284-290.
    [13]WANG Z J,HUANG B,QI L H,et al.Modeling of the dynamic recrystallization behavior of Csf/AZ91D magnesium matrix composites during hot compression process[J].Journal of Alloys and Compounds,2017,708:328-336.
    [14]黄飚,王振军,邱旭东,等.短切碳纤维/AZ91D镁合金复合材料高温变形动态再结晶行为.复合材料学报,2018,35(6):1525-1534.HUANG Biao,WANG Zhenjun,QIU Xudong,et al.Dynamic recrystallization behavior of CFs/AZ91DMg alloy composite during compression at evaluated temperature[J].Acta Materiae Compositae Sinica,2018,35(6):1525-1534(in Chinese).
    [15]LIU Rui,CAO Wei,FAN Tongxiang,et al.Development of processing maps for 3vol%TiCp/AZ91Dcomposites material[J].Materials Science and Engineering A,2010,527:4687-4693.
    [16]DENG K,LI Jianchao,XU Fangjun,et al.Hot deformation behavior and processing maps of fine-grained SiCp/AZ91composite[J].Materials and Design,2015,67:72-81.
    [17]RAGHUNATH B K,KARTHIKEYAN R,GANESAN G,et al.An investigation of hot deformation response of particulate-reinforced magnesium+9%titanium composite[J].Materials and Design,2008,29:622-627.
    [18]NAVEED Ahmed,ALEXANDER Hartmaier.Mechanisms of grain boundary softening and strain-rate sensitivity in deformation of ultrafine-grained metals at high temperatures[J].Acta Materialia,2011,59(11):4323-4334.
    [19]GANGOLU S,GOURAVRAO A,SABIROV I,et al.Development of constitutive relationship and processing map forAl-6.65Si-0.44Mg alloy and its composite with B4C particulates[J].Materials Science and Engineering A,2016,655:256-264.
    [20]陈宝东,郭锋,温静.ZK31-1.5Y镁合金热变形行为及加工图[J].稀有金属材料与工程,2014,43(03):615-620.CHEN Baodong,GUO Feng,WEN Jing.Hot deformation behavior and processing diagram of ZK31-1.5Y magnesium Alloy[J].Rare Metal Materials and Engineering,2014,43(03):615-620(in Chinese).
    [21]PRASAD Y V R K,SASIDHARA S.Hot working guide:Acompendium of processing maps[M].2nd edition.USA:ASM International,2015.
    [22]PRASAD Y V R K,YAO K P,GUPTA M.Hot workability and deformation mechanism in Mg/nano-Al2O3 composite[J].Composites Science and Technology,2009,69(7-8):1070-1076.
    [23]RAVIEHANDRAN N,PRASAD Y V R K.Influence of oxygen on dynamic recrystallization during hot working of polycrystalline copper[J].Materials Science and Engineering A,1992,156(2):195-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700