用户名: 密码: 验证码:
悬停状态下小型无人直升机飞行动力学模型辨识
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Identification of flight dynamics models of a small-scale unmanned helicopter in hover condition
  • 作者:武梅丽文 ; 陈铭 ; 王放
  • 英文作者:WU Meiliwen;CHEN Ming;WANG Fang;School of Aeronautic Science and Engineering,Beihang University;
  • 关键词:频域响应 ; 小型无人直升机 ; 三轴陀螺仪 ; 非线性分析 ; 系统辨识
  • 英文关键词:frequency response;;small-scale unmanned helicopter;;3-axis gyro;;nonlinear analysis;;system identification
  • 中文刊名:BJHK
  • 英文刊名:Journal of Beijing University of Aeronautics and Astronautics
  • 机构:北京航空航天大学航空科学与工程学院;
  • 出版日期:2018-10-17 15:16
  • 出版单位:北京航空航天大学学报
  • 年:2019
  • 期:v.45;No.313
  • 语种:中文;
  • 页:BJHK201903015
  • 页数:14
  • CN:03
  • ISSN:11-2625/V
  • 分类号:121-134
摘要
为了更好地研究小型无人直升机悬停状态动力学特性,对一个8.1kg三轴陀螺仪增稳的电动直升机,从线性系统辨识方面及非线性建模方面,进行了动力学模型深入研究。在线性系统辨识过程中,应用频域辨识方法,在飞行中同时采集陀螺仪之前及之后的操纵数据进行双系统辨识。在非线性建模过程中,机体、旋翼及尾桨动力学被分别建模。尾桨动力学应用3阶段辨识法单独提取基底、陀螺仪及整体增稳模型。结合2种分析过程,应用非线性-线性模型结合修正方法,提高相互的仿真精度。结果表明:13阶高阶模型在线性辨识过程中相对比11阶模型表现更优;双系统线性模型的基底模型数据具有高质量高频特性,最高频率限制可达30rad/s;除挥舞方程参数和尾桨参数以外,非线性数学模型(NMM)进行了7个非线性变量的修正,有效地拟合了悬停实验数据。
        In order to better study the hover dynamics characteristics of small-scale unmanned helicopter,the in-depth dynamics model analysis of linear system identification and nonlinear modeling was conducted in this paper on an 8.1 kg electric helicopter with 3-axis gyro augmentation. In the linear system identification procedure,frequency-domain identification method was adopted. Double systems were obtained by using command signals from both before and after the gyro part. In the nonlinear modeling procedure,body dynamics,rotor dynamics,and tail rotor dynamics were modeled separately. The tail rotor dynamics utilized 3-stage identification method to extract the base model,the gyro model,and the overall model. A nonlinear-linear combined modification method was decided for improving the models' performance. The results show that the 13-state high-order model has higher simulation accuracy compared with the 11-state model. The flight data of the helicopter's base model for dual system linear model has high quality in high-frequency domain,and the maximum frequency is 30 rad/s. Apart from the flapping equation parameters and tail rotor parameters,the combined modification method got 7 parameters of the nonlinear mathematical model(NMM) corrected,which fits the experimental hover data effectively.
引文
[1]METTLER B,TISCHLER M B,KANADE T.System identification modeling of a small-scale unmanned rotorcraft for flight control design[J].Journal of the American Helicopter Society,2002,47(1):50-63.
    [2]杨帆,熊笑,陈宗基,等.超小型直升机动力学模型的建模、辨识与验证[J].北京航空航天大学学报,2010,36(8):913-917.YANG F,XIONG X,CHEN Z J,et al.Modeling,system identification and validation of small rotorcraft-based unmanned aerial vehicle[J].Journal of Beijing University of Aeronautics and Astronautics,2010,36(8):913-917(in Chinese).
    [3]METTLER B.Identification modeling and characteristics of miniature rotorcraft[M].New York:Kluwer Academic Publishers,2002:53-90.
    [4]GAVRILETS V,METTLER B,FERON E.Nonlinear model for a small-size acrobatic helicopter[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit.Reston:AIAA:2001:4333.
    [5]GAVRILETS V,MARTINOS I,METTLER B,et al.Control logic for automated aerobatic flight of a miniature helicopter[C]∥AIAA Guidance,Navigation,and Control Conference and Exhibit.Reston:AIAA,2002:4834.
    [6]KHALIGH S P,FAHIMI F,ROBERT K C.A system identification strategy for nonlinear model of small-scale unmanned helicopters[J].Journal of the American Helicopter Society,2016,61(4):1-13.
    [7]CAI G,CHEN B M,LEE T H,et al.Comprehensive nonlinear modeling of an unmanned-aerial-vehicle helicopter[C]∥AIAAGuidance,Navigation,and Control Conference and Exhibit.Reston:AIAA,2008:7414.
    [8]BHANDARI S,COLGREN R.High-order dynamics models of a small UAV helicopter using analytical and parameter identification techniques[J].Journal of the American Helicopter Society,2015,60(2):1-10.
    [9]GRAUER J,CONROY J,HUBBARD J,et al.System identification of a miniature helicopter[J].Journal of Aircraft,2009,46(4):1260-1269.
    [10]KAPILTA T T,DRISCOLL J T,DIFTLER M A,et al.Helicopter simulation development by correlation with frequency sweep flight test data[C]∥American Helicopter Society 45th Annual Forum Proceedings.Boston,MA:American Helicopter Society(AHS),1989:631-643.
    [11]PANIZZA P,RICCARDI F,LOVERA M.Black-box and greybox identification of the attitude dynamics for a variable-pitch quadrotor[J].IFAC-PapersOnLine,2015,48(9):61-66.
    [12]BERGAMASCO M,LOVERA M.Rotorcraft system identification:An integrated time-frequency domain approach[C]∥Advances in Aerospace Guidance,Navigation and Control.Berlin:Springer,2013:161-181.
    [13]DE MENDONCA C B.Flight vehicle system identification:Atime-domain methodology[J].Journal of Guidance,Control,and Dynamics,2016,39(3):737-738.
    [14]TISCHLER M B,REMPLE R K.Aircraft and rotorcraft system identification[M].Reston:AIAA,2006:321-491.
    [15]LA CIVITA M,PAPAGEORGIOU G,MESSNER W C,et al.Design and flight testing of an H∞controller for a robotic helicopter[J].Journal of Guidance,Control,and Dynamics,2006,29(2):485-494.
    [16]李继广,陈欣,李亚娟,等.飞翼无人机机动飞行非线性鲁棒控制方法[J].北京航空航天大学学报,2018,44(1):89-98.LI J G,CHEN X,LI Y J,et al.Nonlinear robust control method for maneuver flight of flying wing UAV[J].Journal of Beijing University of Aeronautics and Astronautics,2018,44(1):89-98(in Chinese).
    [17]TISCHLER M,CAUFFMAN M.Comprehensive identification from frequency responses,Vol.2:User’s manual:NASA CP10150[R].Washington,D.C.:NASA,1994.
    [18]WU W.Identification method for helicopter flight dynamics modeling with rotor degrees of freedom[J].Chinese Journal of Aeronautics,2014,27(6):1363-1372.
    [19]LA CIVITA M.Integrated modeling and robust control for fullenvelope flight of robotic helicopters[D].Ann Arbor,MI:Carnegie Mellon University,2002:21-98.
    [20]TANG S,ZHENG Z,QIAN S,et al.Nonlinear system identification of a small-scale unmanned helicopter[J].Control Engineering Practice,2014,25:1-15.
    [21]PADFIELD G D.Helicopter flight dynamics[M].Oxford:Blackwell Publishing,2008:87-184.
    [22]HEFFLEY R K,MNICH M A.Minimum-complexity helicopter simulation math model:NASA-11665[R].Washington,D.C.:NASA,1988.
    [23]CAI G,CHEN B M,LEE T H.Unmanned rotorcraft systems[M].Berlin:Springer,2011:70-111.
    [24]LEISHMAN G J.Principles of helicopter aerodynamics[M].Cambridge:Cambridge University Press,2006:115-169.
    [25]CAI G,CHEN B M,PENG K,et al.Modeling and control of the yaw channel of a UAV helicopter[J].IEEE Transactions on Industrial Electronics,2008,55(9):3426-3434.
    [26]CHEN R T N.Effects of primary rotor parameters on flapping dynamics:NASA-1431[R].Washington,D.C.:NASA,1980.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700