用户名: 密码: 验证码:
肌萎缩侧索硬化患者早期选择性损害快速传导运动神经元的电生理研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:An electrophysiological study on selected damage of fast motor neuron in the early stage of patients with amyotrophic lateral sclerosis
  • 作者:王恒恒 ; 潘华 ; 张在强 ; 陈娜 ; 翦凡 ; 张磊 ; 王颖 ; 陈琳
  • 英文作者:WANG Hengheng;PAN Hua;ZHANG Zaiqiang;CHEN Na;JIAN Fan;ZHANG Lei;WANG Ying;CHEN Lin;Department of Neurology,Beijing Tiantan Hospital,Capital Medical University,China National Clinical Research Center for Neurological Diseases;
  • 关键词:肌萎缩侧索硬化 ; 电生理学 ; 神经传导 ; 早期
  • 英文关键词:amyotrophic lateral sclerosis;;electrophysiology;;neural conduction;;early stage
  • 中文刊名:ZSMB
  • 英文刊名:Chinese Journal of Neuroimmunology and Neurology
  • 机构:首都医科大学附属北京天坛医院神经内科国家神经系统疾病临床医学研究中心;
  • 出版日期:2019-05-15
  • 出版单位:中国神经免疫学和神经病学杂志
  • 年:2019
  • 期:v.26
  • 语种:中文;
  • 页:ZSMB201903003
  • 页数:5
  • CN:03
  • ISSN:11-3552/R
  • 分类号:16-20
摘要
目的分析早期肌萎缩侧索硬化(amyotrophic lateral sclerosis,ALS)患者正中神经F波最小潜伏期(F wave minimal latency,Fmin)和运动末端潜伏期(distal motor latency,DML)改变及其与复合肌肉动作电位(compound muscle action potentials,CMAP)负波波幅和负波面积的相关性,寻找ALS早期选择性损害快速传导运动神经元的证据。方法纳入确诊和很可能的ALS(改良EI Escorial标准)患者42例,选择性别构成、年龄及身高与之匹配的健康自愿受试者46名为对照组。采用电生理检测手段检测所有对象正中神经DML、Fmin、CMAP负波波幅和负波面积等指标,比较两组间以上指标的差异,并通过Pearson相关性分析方法分析ALS患者DML、Fmin、Fmax与CMAP负波波幅、负波面积的相关性。结果与对照组比较,ASL组正中神经Fmin延长(P<0. 01),DML虽有延长趋势但差异无统计学意义(P>0. 05),正中神经负波波幅及负波面积较对照组下降(P<0. 01)。ALS患者正中神经CMAP负波波幅、负波面积均与DML(r=-0. 433,P=0. 005;r=-0. 320,P=0.041),及Fmin(r=-0. 669,P<0. 001;r=-0. 597,P<0. 001)呈线性负相关,与Fmax(r=-0. 283,P=0.072;r=-0.220,P=0. 166)无相关性。结论早期ALS患者Fmin与CMAP波幅、负波面积呈负相关,提示快传导的大运动神经元在ALS早期优先受累。
        Objective To analyze the changes of F-wavc minimum latencies(Fmin),distal motor latencies(DML) in the early stage of patients with amyotrophic lateral sclerosis(ALS) and the correlation between Fmin,DML and the compound muscle action potentials(CMAP),negative area of CMAP,to seek the evidence supporting preferential vulnerability of the fastest motor neuron in the early stage of ALS.Methods For this study we enrolled 42 patients who met the revised EI criteria for definite and probable diagnosis ALS and selected 46 healthy volunteers with matching sex composition,age and height as the control group.Standard clectrophysiology studies were performed in all the participants and DML,Fmin,Fmax,CMAP negative amplitude and negative wave area in the median nerve were collected.We compared differences of the above indicators between the two groups and used Pearson correlation analysis to measure the correlation between DML,Fmin,Fmax and CMAP negative amplitude,negative wave area in the median nerve.Results Compared with the control group,Fmin was longer(P<0.01) in the ALS group.Although DML tent to be a prolonged in the ALS group,but no statistically significant difference was found.CMAP negative amplitude in the ALS group decreased significantly when compared with the control group(P<0.01),so did the negative wave area of CMAP(P<0.01).The median nerve CMAP negative amplitude and negative wave area in the ALS group were negatively correlated with DML after height adjustment(r=-0.433,P=0.005;r=-0.320,P =0.041),so did the same pattern to the Fmin(r =-0.669,P<0.001;r=-0.597,P<0.001),but no correlation was found with the Fmax(r=-0.283,P= 0.072;r=-0.220,P = 0.166).Conclusions In early ALS patients,the significantly negative correlation between Fmin and CMAP negative amplitude,negative wave area revealed preferential vulnerability of the fastest motor neurons in the early stage of ALS.
引文
[1]Lambert EH. Diagnostic value of electrical stimulation of motor nerves[J]. Clin Neurophysiol,1962,22:9-16.
    [2] Mills KR. Nithi KA. Peripheral and central motor conduction in amyotrophic lateral sclerosis[J]. J Neurol Sci,1998,159(1):82-87.
    [3] Cornblath DR.Kuncl RW. Mellits ED. et al. Nerve conduction studies in amyotrophic lateral sclerosis[J]. Muscle Nerve. 1992,15(10):1111-1115.
    [4] Argyriou AA,Polychronopoulos P. Talelli P, et al. F wave study in amyotrophic lateral sclerosis:assessment of balance between upper and lower motor neuron involvement[J]. Clin Neurophysiol, 2006,117(6):1260-1265.
    [5] Ahdab R. Creange A. Saint-Val C, et al. Rapidly progressive amyotrophic lateral sclerosis initially masquerading as a demyelinating neuropathy[J]. Neurophysiol Clin, 2013,43(3):181-187.
    [6] Brooks BR. Miller RG, Swash M. et al. El Escorial revisited:revised criteria for the diagnosis of amyotrophic lateral sclerosis[J]. Amyotroph Lateral Scler Other Motor Neuron Disord, 2000,1(5):293-299.
    [7] Kimura J. The F wave and the A wave. In:Kimura J. editor.Electrodiagnosis in disease of nerve and muscle principles and practice[M]. 3rd ed. New York:Oxford University Press Inc.2001.439-449.
    [8] Lambert EH. Mulder DW. Electromyography in amyotrophic lateral sclerosis[J]. Mayo Clin Proc.1957,32:441-446.
    [9] Mills KR. Wasting, weakness and the MRC scale in the first dorsa interosseous muscle[J]. J Neurol Neurosurg Psychiatry,1997, 62(5):541-542.
    [10] Ingram DA.Davis GR, Swash M. Motor nerve conduction velocity distributions in man:results of a new computer-based collision technique[J]. Electroencephalogr Clin Neurophysiol, 1987.66(3):235-243.
    [11]Feinberg DM,Preston DC, Shefner JM. et al. Amplitudedependent slowing of conduction in amyotrophic lateral sclerosis and polyneuropathy[J]. Muscle Nerve.1999,22(7):937-940.
    [12] Noto Y, Kanai K. Misawa S. et al. Distal motor axonal dysfunction in amyotrophic lateral sclerosis[J]. J Neurol Sci,2011,302(1-2):58-62.
    [13] Hadzipasic M, Tahvildari B, Nagy M. et al. Selective degeneration of a physiological subtype of spinal motor neuron in mice with SOD1-linked ALS Neuroscience[J]. Proc Natl Acad Sci U S A, 2014, 111(47):16883-16888.
    [14] Gordon T,Thomas CK.Munson JB. et al. The resilience of the size principle in the organization of motor unit properties in normal and reinnervated adult skeletal muscles[J]. Can J Physiol Pharmacol. 2004. 82(8-9):645-661.
    [15] Fischer LR. Culver DG,Tennant P. et al. Amyotrophic lateral sclerosis is a distal axonopathy:evidence in mice and man[J]. Exp Neurol,2004,185(2):232-240.
    [16] Hegedus J, Putman CT.Gordon T. Time course of preferential motor unit loss in the SOD1 G93A mouse model of amyotrophic lateral sclerosis[J]. Neurobiol Dis. 2007.28(2):154-164.
    [17] Shaw PJ,Eggett CJ. Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis[J]. J Neurol. 2000,247(Suppl1):17-27.
    [18] Frey D. Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases[J]. J Neurosci. 2000,20(7):2534-2542.
    [19] Pun S,Santos AF. Saxena S. et al. Selective vulnerability and pruning of phasic motoneuron axons in motoneuron disease alleviated by CNTF[J]. Nat Neurosci. 2006, 9(3):408-419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700