用户名: 密码: 验证码:
黄水溪砷环境地球化学迁移行为及其细菌群落分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Environmental Geochemistry and Transportation Behavior of Arsenic and Bacterial Community Analysis in Huangshui Creek
  • 作者:李文旭 ; 何剑汶 ; 刘璟 ; 谌书
  • 英文作者:LI Wenxu;HE Jianwen;LIU Jing;CHEN Shu;Key Laboratory of Solid Waste Treatment and Resource Recycle of Ministry of Education,Southwest University of Science and Technology;College of Resources and Environment,Southwest University;
  • 关键词:黄水溪 ; As形态 ; 通量 ; 沉积物 ; 细菌群落多样性
  • 英文关键词:Huangshui Creek;;aresinc fates;;flux;;sediment;;bacterial community diversity
  • 中文刊名:HJKX
  • 英文刊名:Research of Environmental Sciences
  • 机构:西南科技大学固体废物处理与资源化教育部重点实验室;西南大学资源环境学院;
  • 出版日期:2019-01-28 10:06
  • 出版单位:环境科学研究
  • 年:2019
  • 期:v.32;No.257
  • 基金:国家自然科学基金项目(No.41772367)~~
  • 语种:中文;
  • 页:HJKX201906006
  • 页数:8
  • CN:06
  • ISSN:11-1827/X
  • 分类号:52-59
摘要
湖南石门雄黄矿区As(砷)污染问题由来已久,黄水溪更是长期受矿区影响.为进一步指导对矿区As污染的综合治理,通过分析河流As质量浓度及其通量、沉积物ATR-FTIR(衰减全反射傅里叶红外光谱)及其溶解释放As的能力、沉积物细菌群落多样性,对黄水溪石门雄黄矿河段中As的地球化学迁移行为及其河流沉积物的生态风险进行了调查.结果表明:(1)石门雄黄矿区河段水系中ρ(As_T)为0.28~10.43 mg/L,并且主要以As(Ⅴ)形式存在,少量为As(Ⅲ).(2)As年通量在该河段区域增加约5.71 t.(3)ATR-FTIR分析沉积物显示,463、875和910 cm~(-1)处吸收带来自As O_4~(3-)(砷酸根)的振动,775和796 cm~(-1)处吸收带来自As O_3~(3-)(亚砷酸根)的振动,表明该沉积物中存在含As矿物.(4)在沉积物溶解试验中同时释放As(Ⅴ)和As(Ⅲ),振荡6 h后ρ[As(Ⅴ)]和ρ[As(Ⅲ)]分别达0.014~0.550和0.002~0.291 mg/L.(5)沉积物的细菌群落多样性分析显示,黄水溪As污染已对水生生态系统造成了一定的影响,表现为ρ(As_T)较高水环境影响下,沉积物细菌群落丰富度和多样性减少,同时出现未鉴别属;变形菌门(Proteobacteria)和拟杆菌门(Bacteroidetes)是黄水溪沉积物中的优势菌群.研究显示,黄水溪中As主要迁移途径可能为,在废弃选矿区域段含As尾矿颗粒进入河道,之后溶解进入水环境,在下游河段又再次被吸附/沉淀,并且吸附的As并不稳定,易再次释放.
        Arsenic(As)pollution is a ubiquitous environment problem in Shimen realgar mine area,Hunan Province,China.Huangshui Creek is especially polluted by the historical realgar mine for a long time.This study investigated the fates and flux of As in water,the spectroscopic characteristics and dynamic dissolution of As in the sediments,and bacteria diversity of sediments.The geochemical migrations of As in the creak and ecological risk of its sediments were investigated in order to help future comprehensive treatment of As pollution in the creek.The research showed that:(1)The total As in water was in the range of 0.28-10.43 mg/L,As(Ⅴ)was the main inorganic As species,and As(Ⅲ)was detected by LC-AFS.(2)Based on the calculation,the annual flux of the total As increased about5.71 t in this area.(3)The obvious ATR-FTIR bands were observed at 463,875 and 910 cm~(-1),which were attributed to As O_4~(3-).The other bands occurring at 775 and 796 cm~(-1)were attributed to As O_3~(3-).These results revealed that the sediment contained arsenic-bearing minerals.(4)Both As(Ⅴ)and As(Ⅲ)species were observed in the dynamic dissolution experiments of the sediments,the concentrations reached 0.014-0.550 and 0.002-0.291 mg/L after 6 h,respectively.(5)The 16S rRNA gene sequencing in the sediments revealed that aquatic ecology of the creek was affected by the As pollution,which results in the decrease of abundance and diversity of bacteria community,and the increase of some unidentified genus.In addition,the Proteobacteria and Bacteroidetes were the dominant phyla.In Conclusion,the As pollution of Huangshui Creek mainly originates from the arsenic-containing minerals in the creek channel,which dissolve and release arsenic into the water system.The adsorbed As in the sediment is unstable and it has potential risk to release again which may become a source of As contamination.
引文
[1]SCHALAU J. Arsenic in drinking water[J]. Kaohsiung Journal of Medical Sciences,2005,27(9):358-359.
    [2]SMITH A H,HOPENHAYNRICH C,BATES M N,et al. Cancer risks from arsenic in drinking water[J]. Environmental Health Perspectives,1992,97(1):259-267.
    [3]TSUJI J S,ALEXANDER D D,PEREZ V,et al.Arsenic exposure and bladder cancer:quantitative assessment of studies in human populations to detect risks at low doses[J]. Toxicology,2014,317(1):17-30.
    [4]HUDSONEDWARDS K.Tackling mine wastes[J]. Science,2016,352(6283):288-290.
    [5]DRAHOTA P,FILIPPI M. Secondary arsenic minerals in the environment:a review[J]. Environment International,2009,35(8):1243-1255.
    [6]PIERCE M L,MOORE C B.Adsorption of arsenite and arsenate on amorphous iron hydroxide[J].Water Research,1982,16(7):1247-1253.
    [7]ZHU Xiangyu,WANG Rucheng,LU Xiancai,et al. Secondary minerals of weathered orpiment-realgar-bearing tailings in Shimen carbonate-type realgar mine,Changde,Central China[J]. Mineral Petrol,2013,109(2014):1-15.
    [8]TANG Jingwen, LIAO Yingping, YANG Zhihui, et al.Characterization of arsenic serious-contaminated soils from Shimen realgar mine area,the Asian largest realgar deposit in China[J].Journal of Soils and Sediments,2016,16(5):1519-1528.
    [9]DONG Guowen,HUANG Yaohua,YU Qiangqing,et al. Role of nanoparticles in controlling arsenic mobilization from sediments near a realgar tailing[J]. Environmental Science&Technology,2014,48(13):7469-7476.
    [10]ZENG Xianchun,GUOJI E,WANG Jianing,et al. Functions and unique diversity of genes and microorganisms involved in arsenite oxidation from the tailings of a realgar mine[J]. Applied and Environmental Microbiology,2016,82(24):7019-7029.
    [11]FAN Lijun,ZHAO Fenghua,LIU Jing,et al. The As behavior of natural arsenical-containing colloidal ferric oxyhydroxide reacted with sulfate reducing bacteria[J]. Chemical Engineering Journal,2017,332(2018):183-191.
    [12]曾敏,廖柏寒,曾清如,等.湖南郴州、石门、冷水江3个矿区As污染状况的初步调查[J].农业环境科学学报,2006,25(2):418-421.ZENG Min,LIAO Bohan,ZENG Qingru,et al. Investigation of arsenic pollution of 3 mining areas in Chenzhou,Shimen,and Lengshuijiang,3 cities in Hunan[J]. Journal of Agro-Environment Science,2006,25(2):418-421.
    [13]雷鸣,曾敏,郑袁明,等.湖南采矿区和冶炼区水稻土重金属污染及其潜在风险评价[J].环境科学学报,2008,28(6):1212-1220.LEI Ming,ZENG Min,ZHENG Yuanming,et al. Heavy metals pollution and potential ecological risk in paddy soils around mine areas and smelting areas in Hunan Province[J]. Acta Scientiae Circumstantiae,2008,28(6):1212-1220.
    [14]杨敏,滕应,任文杰,等.石门雄黄矿周边农田土壤重金属污染及健康风险评估[J].土壤,2016,48(6):1172-1178.
    [15]杜艳艳,王欣,谢伟城,等.负载铁生物炭对雄黄矿尾渣As的钝化效果[J].环境科学研究,2017,30(1):159-165.DU Yanyan,WANG Xin,XEI Weicheng,et al. Effects of Feimpregnated biochar on arsenic immobilization in realgar mine tailings[J]. Research of Environmental Sciences,2017,30(1):159-165.
    [16]YANG Fen,XIE Shaowen,WEI Chaoyang,et al. Arsenic characteristics in the terrestrial environment in the vicinity of the shimen realgar mine,China[J]. Science of the Total Environment,2018,626:77-86.
    [17]ANDERSON C R,COOK G M. Isolation and characterization of arsenate-reducing bacteria from arsenic-contaminated sites in New Zealand[J].Current Microbiology,2004,48(5):341-347.
    [18]CHANGY C,NAWATA A,JUNG K,et al. Isolation and characterization of an arsenate-reducing bacterium and its application for arsenic extraction from contaminated soil[J].Journal of Industrial Microbiology and Biotechnology,2012,39(1):37-44.
    [19]OSBORNE T H,MCARTHUR J M,SIKDAR P K,et al.Isolation of an arsenate-respiring bacterium from a redox front in an arsenicpolluted aquifer in West Bengal,Bengal Basin[J]. Environmental Science&Technology,2015,49(7):4193-4199.
    [20]XU Liying,ZHAO Zhixi,WANG Shaofeng,et al.Transformation of arsenic in offshore sediment under the impact of anaerobic microbial activities[J]. Water Research,2011,45(20):6781-6788.
    [21]PáEZ-ESPINO D,TAMAMES J,DE L V,et al.Microbial responses to environmental arsenic[J].Biometals,2009,22(1):117-130.
    [22]陈倩,苏建强,叶军.土壤中耐As细菌的筛选和As还原基因多样性分析[J].生态环境学报,2011,20(12):1919-1926.CHEN Qian,SU Jianqiang,YE Jun. Isolation of arsenic-resistant bacterias from soil and the diversity of arsenate reducing gens[J].Ecology and Environmental Sciences,2011,20(12):1919-1926.
    [23]杨宇,白飞,杨莉,等.湖南石门雄黄矿区矿样中的As氧化细菌的分离及鉴定[J].生态环境学报,2015,24(1):133-138.YANG Yu,BAI Fei,YANG Li,et al. Isolation and Identification of arsenic-oxidizing bacteria from Shimen realgar mine,Hunan[J].Ecology and Environmental Sciences,2015,24(1):133-138.
    [24]YANG Yu,YANG Li,XIANG Xiaoming. Bacterial diversity and community structure analysis for two samples of mine drainage from Shimen realgar mine,China[J]. Advanced Materials Research,2013,641/642(1):246-252.
    [25]孙玉青,张莘,吴照祥,等.雄黄矿区不同As污染土壤中微生物群落结构及碳源利用特征[J].环境科学学报,2015,35(11):3669-3678.SUN Yuqing,ZHANG Xin,WU Zhaoxiang,et al. Soil microbial community structure and carbon source metabolic diversity in the realgar mining area[J]. Acta Scientiae Circumstantiae,2015,35(11):3669-3678.
    [26]XIE Xianjun,WANG Yanxin,LI Junxia,et al.Soil geochemistry and groundwater contamination in an arsenic-affected area of the Datong Basin,China[J]. Environmental Earth Sciences,2014,71(8):3455-3464.
    [27]YU Qian,WANG Yanxin,MA Rui,et al.Monitoring and modeling the effects of groundwater flow on arsenic transport in Datong Basin[J].Journal of Earth Science,2014,25(2):386-396.
    [28]胡毅鸿,周蕾,李欣,等.石门雄黄矿区As污染研究:Ⅰ.As空间分布、化学形态与酸雨溶出特性[J].农业环境科学学报,2015,34(8):1515-1521.HU Yihong,ZHOU Lei,LI Xin,et al. Arsenic contamination in shimen realgar mine:Ⅰ. As spatial distribution, chemical fractionations and leaching[J]. Journal of Agro-Environment Science,2015,34(8):1515-1521.
    [29]BEDNAR A J, GARBARINO J R, FERRER I, et al.Photodegradation of roxarsone in poultry litter leachates[J].Science of the Total Environment,2003,302(1):237-245.
    [30]JACKSON B P,SEAMAN J C,BERTSCH P M. Fate of arsenic compounds in poultry litter upon land application[J].Chemosphere,2006,65(11):2028-2034.
    [31]MORRISON J L.Distribution of arsenic from poultry litter in broiler chickens,soil,and crops[J]. Journal of Agricultural and Food Chemistry,1969,17(6):1288-1290.
    [32]JACKSON B P,BERTSCH P M. Determination of Arsenic speciation in poultry wastes by IC-ICP-MS[J]. Environmental Science&Technology,2001,35(24):4868-4873.
    [33]VINK B W.Stability relations of antimony and arsenic compounds in the light of revised and extended Eh-pH diagrams[J].Chemical Geology,1996,130(1/2):21-30.
    [34]GOLDBERG S,JOHNSTON C T.Mechanism of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements,vibrational spectroscopy,and surface complexation modeling[J].Journal of Colloid and Interface Science,2001,234(1):204-216.
    [35]LIU Jing,CHENG Hongfa,DONG Faqin,et al.The mineral tooeleite Fe6(As O3)4SO4(OH)4·4H2O:an Infrared and raman spectroscopic study-environmental implications for arsneic remediation[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2013,103:272-275.
    [36]ZHU Xiangyu,WANG Rucheng,LU Xiancai,et al. Secondary minerals of weathered orpiment-realgar-bearing tailings in Shimen carbonate-type realgar mine, Changde, Central China[J].Mineralogy and Petrology,2013,109:1-15.
    [37]TAREQ S M,SAFIULLAH S,ANAWAR H M,et al. Arsenic pollution in groundwater:a self-organizing complex geochemical process in the deltaic sedimentary environment,Bangladesh[J].Science of the Total Environment,2003,313(1/2/3):213-226.
    [38]GHOSH D,BHADURY P,ROUTH J.Diversity of arsenite oxidizing bacterial communities in arsenic-rich deltaic aquifers in West Bengal,India[J].Front Microbiol,2014,5(5):1-14.
    [39]QAMAR N,REHMAN Y,HASNAIN S.Arsenic-resistant and plant growth promoting Firmicutes andγ-Proteobacteria species from industrially polluted irrigation water and corresponding cropland[J].Journal of Applied Microbiology,2017,123(3):748-758.
    [40]WHITE A G,WATTS G S,LU Z,et al. Environmental arsenic exposure and microbiota in induced sputum[J]. International Journal Environment Research and Public Health,2014,11(2):2299-2313.
    [41]CHATURVEDI N,PANDEY P N. Phylogenetic analysis of gammaproteobacterial arsenate reductase proteins specific to enterobacteriaceae family, signifying arsenic toxicity[J].Interdisciplinary Sciences Computational Life Sciences,2014,6(1):57-62.
    [42]ZHANG Lili,ZHANG Huaiqiang,WANG Zhiheng,et al. Dynamic changes of the dominant functioning microbial community in the compost of a 90 m3aerobic solid state fermentor revealed by integrated meta-omics[J].Bioresource Technology,2016,203:1-10.
    [43]WEBSTER N S,COBB R E,NEGRI A P. Temperature thresholds for bacterial symbiosis with a sponge[J]. International Society for Microbal Ecology,2008,2(8):830-842.
    [44]张景荣,陆建军,王蔚.论湖南石门As-(金)矿床的古热泉成因[J].地质论评,1994,40(5):429-435.ZHANG Jinrong,LU Jianjun,WANG Wei. The Shimen hot springtype As-(Au)deposit,Hunan Province[J]. Editorial Committee of Geological Review,1994,40(5):429-435.
    [45]熊先孝,刘昌涛,姚超美,等.论石门雄黄矿床硅质岩的热水成因[J].化工矿产地质,1997,19(2):109-114.XIONG Xianxiao,LIU Changtao,YAO Chaomei,et al. Hot water origination of silicaiite in Shimen realgar deposit[J]. Geology of Chemical Minerals,1997,19(2):109-114.
    [46]PAUL S,ALI M N,CHAKRABORTY S,et al.Diversity of bacterial communities inhabiting soil and groundwater of arsenic contaminated areas in West Bengal,India[J]. Microbiology,2017,86(2):264-275.
    [47]BASU S,PAUL T,YADAV P,et al.Molecular study of indigenous bacterial community composition on exposure to soil arsenic concentration gradient[J].Polish Journal of Microbiology,2017,66(2):209-221.
    [48]LI Ping,WANG Yanyong,DAI Xinyue,et al.Microbial diversity in high arsenic groundwater in Hetao Basin of Inner Mongolia,China[J].Geomicrobiology Journal,2013,30(10):897-909.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700