用户名: 密码: 验证码:
橡胶弹簧隔振特性及其影响因素研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research of Rubber Spring Vibration Isolation Characteristics and Its Influence Factors
  • 作者:黄雪涛 ; 李战芬 ; 王海霞 ; 钟兵
  • 英文作者:HUANG Xue-tao;LI Zhan-fen;WANG Hai-xia;ZHONG Bing;School of Automotive Engineering,Shandong Jiaotong University;Network Center,Taiyuan Institute of Technology;
  • 关键词:橡胶弹簧 ; 隔振特性 ; 力学特性
  • 英文关键词:rubber spring;;vibration isolation characteristic;;mechanical property
  • 中文刊名:HBGG
  • 英文刊名:Journal of North University of China(Natural Science Edition)
  • 机构:山东交通学院汽车工程学院;太原工业学院网络中心;
  • 出版日期:2018-04-15
  • 出版单位:中北大学学报(自然科学版)
  • 年:2018
  • 期:v.39;No.178
  • 基金:山东交通厅资助项目(2016B56);; 山东交通学院博士科研启动基金资助项目(BJ2015018);; 山东省农机装备研发创新计划资助项目(2017YF004)
  • 语种:中文;
  • 页:HBGG201802008
  • 页数:5
  • CN:02
  • ISSN:14-1332/TH
  • 分类号:50-54
摘要
针对工程机械和轨道交通中的振动隔离问题,以橡胶弹簧隔振系统为研究对象,采用理论推导、仿真分析和试验验证相结合的方法,研究了橡胶弹簧的隔振特性及其影响因素.建立了橡胶弹簧的本构方程,提出了橡胶弹簧隔振特性的理论计算方法,进行了橡胶材料的力学特性试验,并结合橡胶弹簧隔振系统的有限元模型,通过仿真分析得出如下结论:橡胶弹簧的隔振特性随激励频率、隔振系统质量、橡胶弹簧刚度和阻尼的变化而变化,且其绝对传递率随橡胶弹簧刚度和阻尼的增加而增大,随隔振系统质量的增大而减少,当激励频率小于28.3rad/s时,绝对传递率随激励频率的增加而增大,当激励频率为28.3rad/s时,绝对传递率达到最大值,当激励频率大于28.3rad/s时,绝对传递率随激励频率的增大而减少.
        According to the vibration isolation problem of Engineering machinery and rail transit,with rubber spring vibration isolation system as the research object,it used the method of theoretical derivation,simulation analysis and experimental validation of a combination of factors,to study the vibration isolation characteristics of rubber spring and its influencing factors.Established the constitutive equation of rubber spring rubber material based on the constitutive model,put forward the theoretical calculation method of rubber spring vibration isolation characteristics,tested the mechanical properties of rubber material,and combined with the finite element model of rubber spring vibration isolation system.It can draw the following conclusions through simulation analysis method:the vibration characteristics of rubber spring changes with excitation frequency,quality of vibration isolation system,rubber spring stiffness and damping,and its absolute transfer rate increases with stiffness and damping,and reduces with the quality of isolation system.The absolute transfer rate increases with the increase of excitation frequency when the excitation frequency is less than 28.3 rad/s,reaches the maximum value when the excitation frequency is 28.3 rad/s,and decreases with the increase of excitation frequency when the excitation frequency is greater than 28.3 rad/s.
引文
[1]Schmidt A,Gaul A.Finite element formulation of visco-elastic constitutive equations using fractional time derivatives[J].Nonlinear Dynamics,2002,29(1-4):37-55.
    [2]Karlsson F,Persson A.Modelling non-linear dynamics of rubber bushings-parameter identification and validation[D].Skaner:Lund University,2003.
    [3]Sasso M,Palmieria G,Chiappinia G,et al.Characterization of hyperelastic rubber-like materials by biaxial and uniaxial stretching tests based on optical methods[J].Polymer Testing,2008,27(8):995-1004.
    [4]Ho C,Langn Z Q,Billings S A.Design of vibration isolators by exploiting the beneficial effects of stiffness and damping nonlinearities[J].Journal of Sound and Vibration,2014,333(12):2489-2504.
    [5]Liu L,Tan K K,Guo Y,et al.Active vibration isolation based on model reference adaptive control[J].International Journal of Systems Science,2014,45(2):97-108.
    [6]Platz R,Enss G C.Comparison of uncertainty in passive and active vibration isolation[J].Model Validation and Uncertainty Quantification,2015,3:15-25.
    [7]Li S,Fang B,Yang T Z,et al.Dynamics of vibration isolation system obeying fractional differentiation[J].Aircraft Engineering and Aerospace Technology,2012,84(2):103-108.
    [8]黄雪涛,顾亮,吕唯唯.轻型载货汽车减振技术分析及优化设计[J].振动·测试与诊断,2013,33(2):315-318.Huang Xuetao,Gu Liang,LüWeiwei.Vibration reduction technology analysis and optimal design on light truck[J].Journal of Vibration,Measurement&Diagnosis,2013,33(2):315-318.(in Chinese)
    [9]胡振娴,顾亮.汽车前悬架橡胶连接件的变形量时域响应[J].北京理工大学学报,2010,30(6):651-654.Hu Zhenxian,Gu Liang.Time response of front-suspension mount deflection[J].Transactions of Beijing Institute of Technology,2010,30(6):651-654.(in Chinese)
    [10]高俊,季宏丽,裘进浩.基于层叠式PVDF作动器的混合隔振器的设计与特性研究[J].振动与冲击,2015,34(9):141-148.Gao Jun,Ji Hongli,Qiu Jinhao.Design and characteristics analysis of hybrid isolator based on laminated PVDF actuator[J].Journal of Vibration and Shock,2015,34(9):141-148.(in Chinese)
    [11]李玉龙,白鸿柏,何忠波,等.金属橡胶非线性减振系统混沌特性研究[J].北京理工大学学报,2016,36(5):491-497.Li Yulong,Bai Hongbai,He Zhongbo,et al.Chaotic Response of metal rubber vibration nonlinear isolation system[J].Transactions of Beijing Institute of Technology,2016,36(5):491-497.(in Chinese)
    [12]李玉龙,白鸿柏,何忠波.金属橡胶消极减振系统复杂响应特性研究[J].振动与冲击,2016,35(4):87-92.Li Yulong,Bai Hongbai,He Zhongbo.Complex response characteristics of a passive metal-rubber vibration isolation system[J].Journal of Vibration and Shock,2016,35(4):87-92.(in Chinese)
    [13]王小莉,上官文斌,曾祥坤,等.基于开裂能密度及裂纹扩展特性的橡胶隔振器疲劳特性预测[J].振动与冲击,2016,35(6):70-74.Wang Xiaoli,Shangguan Wenbin,Zeng Xiangkun,et al.A method to predict fatigue performances of rubber isolator based on the cracking energy density and the fatigue crack growth characteristic of rubber material[J].Journal of Vibration and Shock,2016,35(6):70-74.(in Chinese)
    [14]杨俊.橡胶弹簧动态特性研究[D].成都:西南交通大学,2015.
    [15]杨俊,池茂儒,朱旻昊,等.轨道车辆用弹性橡胶垫非线性模型研究[J].振动工程学报,2016,29(2):291-297.Yang Jun,Chi Maoru,Zhu Minhao,et al.The nonlinear constitutive model of elastic rubber mat for rail vehicles[J].Journal of Vibration and Shock,2016,29(2):291-297.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700