用户名: 密码: 验证码:
窄带随机激励双稳压电悬臂梁响应机制与能量采集研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism of a nonlinear bistable piezoelectric cantilever beam under narrow-band random excitations and its energy harvesting
  • 作者:吴娟娟 ; 冷永刚 ; 乔海 ; 刘进军 ; 张雨阳
  • 英文作者:Wu Juan-Juan;Leng Yong-Gang;Qiao Hai;Liu Jin-Jun;Zhang Yu-Yang;School of Mechanical Engineering, Tianjin University;Caterpillar technology R & D Co., Ltd.;
  • 关键词:窄带随机激励 ; 双稳压电悬臂梁 ; 等效线性固有频率 ; 能量采集
  • 英文关键词:narrow-band random excitation;;bistable piezoelectric cantilever beam;;equivalent linear natural frequency;;energy harvesting
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:天津大学机械工程学院;卡特彼勒技术研发(中国)有限公司;
  • 出版日期:2018-10-17 16:56
  • 出版单位:物理学报
  • 年:2018
  • 期:v.67
  • 基金:国家自然科学基金(批准号:51675370);; 天津市应用基础与前沿技术研究计划(批准号:15JCZDJC32200)资助的课题~~
  • 语种:中文;
  • 页:WLXB201821006
  • 页数:17
  • CN:21
  • ISSN:11-1958/O4
  • 分类号:79-95
摘要
具有中心频率的窄带随机振动是一种典型的环境振动,其振动特征与环境的变化密切相关.本文以双稳压电悬臂梁能量采集系统为研究对象,分析系统在不同磁铁间距下的等效线性固有频率特性,以带通滤波器输出一定带宽的窄带随机激励模拟环境振动,研究系统的响应和能量采集特征.研究表明,对于一定带宽的窄带随机激励,一方面系统始终存在一个固定的磁铁间距使其输出达到峰值,另一方面当激励中心频率在一定范围内变化时,系统还分别存在另外两个或一个不同磁铁间距也能使系统输出达到峰值,而且该峰值特性是系统在其等效线性固有频率处诱导双稳或单稳"共振"形成的.研究结果可为具有窄带随机激励特征的振动能量采集提供一定的理论和技术支持.
        While wireless sensors, data transmission devices and medical implant devices tend to miniaturization and low consumption, energy supply modes such as batteries, solar energy and wind energy are limited due to their defects.Instead, vibration energy harvesting can open up new possibilities for self-supplying the low-consumption devices. The narrow-band random vibration with center frequency is a typical vibration in the environment, and its characteristics are closely related to the environment.This paper takes the energy harvesting system with bi-stable piezoelectric cantilever beam as a research object,and the characteristics of system's equivalent linear natural frequency, linear and nonlinear stiffness under different intervals between magnets are analyzed. By using the narrow-band random excitation with a certain bandwidth output of the bandpass filter to simulate environment vibration and using Runge-Kutta method to solve the system equation numerically, the response of system and the characteristics of energy harvesting are studied.It is observed that the variation of the magnet spacings at peak output voltage, which possesses a central frequency,is related to the variation of the equivalent linear natural frequency of the system with the interval between magnets.When the variation of magnet spacing is triggered by the narrow-band random excitation with a certain bandwidth,there is always a constant interval between magnets, making the system produce a peak output, which is like a bi-stable system that produces the peak output at optimal spacing under broad-band excitation. On the other hand, there are also more than one or two different magnet spacings making the system produce peak outputs while excitation's center frequency changes in a certain range, and the peak outputs are formed by bi-stable or single-stable "resonance" of the system, induced at the equivalent linear natural frequency. And the demarcation point spacing of the single-stable and bi-stable vibration of the system are the magnet spacing when linear stiffness is zero.Therefore, for the narrow-band random excitation in the actual environment, the magnet spacing of the energy harvesting system can be reasonably arranged according to the specific working conditions to achieve better electromechanical energy conversion. The findings in this paper can provide some theoretical and technical support for the study of harvesting the vibration energy with characteristics of narrow-band random excitation.
引文
[1]Daqaq M F,Masana R,Erturk A,Quinn D D 2014 Appl.Mech.Rev.66 040801
    [2]Roundy S,Wright P K,Rabaey J 2003 Comput.Commun.26 1131
    [3]Wang H Y,Xie T,Shan X B,Yuan J B 2010 J.Xi’an Jiaotong Univ.44 114(in Chinese)[王红艳,谢涛,单小彪,袁江波2010西安交通大学学报44 114]
    [4]Priya S,Inman D J(translated by Huang J Q,Huang Q A)2011 Energy Harvesting Technologies(Nanjing:Dongnan University Press)pp34-62(in Chinese)[(普利亚S,茵曼D J著(黄见秋,黄庆安译)2011能量收集技术(南京:东南大学出版社)第34-62页]
    [5]Cottone F,Vocca H,Gammaitoni L 2009 Phys.Rev.Lett.102 080601
    [6]Gammaitoni L,Neri I,Vocca H 2009 Appl.Phys.Lett.94 164102
    [7]Ferrari M,Ferrari V,Guizzetti M,AndóB,Baglio S,Trigona C 2010 Sens.Actuat.A:Phys.162 425
    [8]Ferrari M,BaùM,Guizzetti M,Ferrari V 2011 Sens.Actuat.A:Phys.172 287
    [9]Chen Z S,Yang Y M 2011 Acta Phys.Sin.60 074301(in Chinese)[陈仲生,杨拥民2011物理学报60 074301]
    [10]Gao Y J,Leng Y G,Fan S B,Lai Z H 2014 Smart Mater.Struct.23 095003
    [11]Beeby S P,Wang L,Zhu D,Weddell A S,Merrett G V2013 Smart Mater.Struct.22 075022
    [12]Wischke M,Masur M,Kroner M,Woias P 2011 Smart Mater.Struct.20 085014
    [13]Harne R L,Wang K W 2013 J.Vib.Acoust.136 021009
    [14]Green P L,Papatheou E,Sims N D 2013 J.Intell.Mater.Syst.Struct.24 1494
    [15]Tan D,Leng Y G,Fan S B,Gao Y J 2015 Acta Phys.Sin.64 060502(in Chinese)[谭丹,冷永刚,范胜波,高毓璣2015物理学报64 060502]
    [16]Guo K K 2015 Ph.D.Dissertation(Tianjin:Tianjin University)(in Chinese)[郭抗抗2015博士学位论文(天津:天津大学)]
    [17]He Q,Daqaq M F 2015 J.Vib.Acoust.137 021009
    [18]Daqaq M F 2010 J.Sound Vib.329 3621
    [19]Masana R,Daqaq M F 2013 J.Sound Vib.332 6755
    [20]Barton D A W,Burrow S G,Clare L R 2010 J.Vib.Acoust.132 021009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700