用户名: 密码: 验证码:
基于Logistic回归的陕南秦巴山区降雨型滑坡预测方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Prediction method of rainfall-induced landslides in Qinba Mountains of south Shaanxi Province based on Logistic regression
  • 作者:赵晓萌 ; 蔡新玲 ; 雷向杰 ; 田亮 ; 卫星君
  • 英文作者:ZHAO Xiaomeng;CAI Xinling;LEI Xiangjie;TIAN Liang;WEI Xingjun;Shaanxi Provincial Climate Center;Shaanxi Energy Institute;
  • 关键词:滑坡 ; 秦巴山区 ; Logistic回归 ; 模型验证
  • 英文关键词:landslide;;Qinba Mountains;;Logistic regression;;model validation
  • 中文刊名:BCDT
  • 英文刊名:Journal of Glaciology and Geocryology
  • 机构:陕西省气候中心;陕西能源职业技术学院;
  • 出版日期:2019-03-13 11:29
  • 出版单位:冰川冻土
  • 年:2019
  • 期:v.41
  • 基金:国家重点基础研究发展计划(973计划)项目(2013CB430202);; 中国气象局小型业务建设项目(陕西)(陕气函[2016]260号/陕气减函[2016]30号);; 陕西省气象局科学技术研究项目青年科研基金项目(2017Y-6);; 陕西能源职业技术学院科研项目(17KYP02)资助
  • 语种:中文;
  • 页:BCDT201901019
  • 页数:8
  • CN:01
  • ISSN:62-1072/P
  • 分类号:181-188
摘要
通过建立陕南秦巴山区降雨型滑坡灾害数据库,分析了不同降雨因子的雨强分布,计算了降水突发型滑坡灾害、降水滞后型滑坡灾害的雨强与滑坡发生概率的相关系数,采用Logistic回归方法确定不同时效降雨因子,得到陕南秦巴山区降雨型滑坡预测模型,并利用滑坡灾害实例,运用ROC曲线和kappa系数法对模型进行了验证。结果表明:滑坡前第m日降雨量R_(dm)(m=0,1,2)及综合雨量R_c四个降雨因子为诱发降雨型滑坡较为显著的因子。当降雨强度≥75 mm·h~(-1)时,最易引起突发型滑坡;当连续降水达到2 d,且24小时雨量达到小雨或中雨时,应警惕滞后型滑坡灾害的发生。模型预测准确率达82.1%, ROC曲线的AUC值为0.836, kappa系数为0.616,验证结果显示该模型可靠。研究成果可作为陕南秦巴山区降雨型滑坡预报预警研究工作的重要参考。
        By establishing the database of rainfall-induced landslide hazards in Qinba Mountains of south Shaanxi Province, the rain intensity distribution of different rainfall factors is ascertained and the correlation coefficients between probability of occurrence of landslide and rainfall intensity factors are analyzed. Different rainfall factors are determined by Logistic regression methods. This research gets the regression model of rainfall-induced landslides in Qinba Mountains of south Shaanxi Province. Using the cases of landslide disasters, the model is validated by ROC curve and kappa coefficient method. The results show that the rainfall factors of R_(dm )(m=0,1,2) and R_c have the highest correlation with landslides. When the rainfall intensity ≥ 75 mm·h~(-1), sudden landslide is most likely to burst. When precipitation lasts for two days and 24-hour rainfall reaches light or moderate rain level, the outburst of lagged landslide disaster should be on guard against. The accuracy of the model may reach 82.1%. The AUC value of the ROC curve is 0.836 and the kappa coefficient is 0.616. The verification results show that the model is reliable. This study is useful to predict the rainfall-induced landslides in Qinba Mountains of south Shaanxi Province.
引文
[1] Report on mountain flood disaster prevention and control planning in Shaanxi Province[R]. Xi′an: Shaanxi Provincial Department of Water Resources, 2004. [陕西省山洪灾害防治规划报告[R]. 西安: 陕西省水利厅, 2004.]
    [2] Chen Yong, Tan Yan, Mao Changbao. Mountain hazards, risk management, disaster-preventive and poverty-alleviating resettlement[J]. Journal of Catastrophology, 2013, 28(2): 136-142. [陈勇, 谭燕, 茆长宝. 山地自然灾害、 风险管理与避灾扶贫移民搬迁[J]. 灾害学, 2013, 28(2): 136-142.]
    [3] Disaster Reduction Association of Shaanxi Province. Mountainous natural disaster in Qinba Mountain area[M]. Xi′an: World Book Press, 1999. [陕西省减灾协会. 秦巴山区山地自然灾害[M]. 西安: 世界图书出版西安公司, 1999.]
    [4] Wen Yanjun. Analysis on social vulnerability to natural disasters in Shaanxi Province[J]. Journal of Catastrophology, 2012, 27(2): 77-81. [文彦君. 陕西省自然灾害的社会易损性分析[J]. 灾害学, 2012, 27(2): 77-81.]
    [5] Du Jiwen. Forecast and early warning of rain-type geological disasters[M]. Beijing: Science Press, 2010. [杜继稳. 降雨型地质灾害预报预警[M]. 北京: 科学出版社, 2010.]
    [6] Han Jinliang, Wu Shuren, Li Donglin, et al. Distribution regularities and contribution factor of geological hazard in Qinling Daba Mountains[J]. Geological Science and Technology Information, 2007, 26(1): 101-108. [韩金良, 吴树仁, 李东林, 等. 秦巴地区地质灾害的分布规律与成因[J]. 地质科技情报, 2007, 26(1): 101-108.]
    [7] Chen Wenwu, Liu Wei, Lin Gaochao, et al. The study on sensitivity of landslide induced by changes in loess structure[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 929-936. [谌文武, 刘伟, 林高潮, 等. 天水黄土结构性变化诱发滑坡敏感性分析[J]. 冰川冻土, 2016, 38(4): 929-936.]
    [8] Su Xing, Wei Wanhong, Guo Wanqin, et al. Analyzing the impact of relief amplitude to loess landslides based on SRTM DEM in Tianshui Prefecture[J]. Journal of Glaciology and Geocryology, 2017, 39(3): 616-622. [宿星, 魏万鸿, 郭万钦, 等. 基于SRTM DEM的地形起伏度对天水市黄土滑坡的影响分析[J]. 冰川冻土, 2017, 39(3): 616-622.]
    [9] Wei Linsen, Ding Hongwei, Wang Ting, et al. Loess landslide in Longxi of Gansu Province: precipitation inducted function and space-time effect[J]. Journal of Glaciology and Geocryology, 2017, 39(3): 609-615. [魏林森, 丁宏伟, 王婷, 等. 降水对陇西黄土滑坡的诱发作用及时空影响分析[J]. 冰川冻土, 2017, 39(3): 609-615.]
    [10] Pan Mao, Li Tiefeng. Disaster geology[M]. Beijing: Peking University Press, 2002: 21-23. [潘懋, 李铁锋. 灾害地质学[M]. 北京: 北京大学出版社, 2002: 21-23.]
    [1[1] Guzzetti F, Reichenbach P, Cardinali M, et al. Probabilistic landslide hazard assessment at the basin scale[J]. Geomorphology, 2005, 72(1): 272-299.
    [12] Li Jun, Zhou Chenghu. Analysis of relationship between landslide volume and antecedent precipitation in Hong Kong[J]. Journal of Natural Disasters, 2002, 11(2): 37-45. [李军, 周成虎. 香港滑坡体积与前期降水关系分析[J]. 自然灾害学报, 2002, 11(2): 37-45.]
    [13] Zhao Kuifeng. Studies on mechanism of strong rainstorm causing geological disaster and its predicting & early warning method in Qinling-Bashan Mountains[D]. Lanzhou: Lanzhou University, 2012. [赵奎锋. 诱发陕西秦巴山区地质灾害的强降水形成机制及预报预警研究[D]. 兰州: 兰州大学, 2012.]
    [14] Wang Huabin, Wu Shuren. Key theory and method of landslide hazard risk assessments[J]. Geological Bulletin of China, 2008, 27(11): 1764-1770. [汪华斌, 吴树仁. 滑坡灾害风险评价的关键理论与技术方法[J]. 地质通报, 2008, 27(11): 1764-1770.]
    [15] Shi Jusong. Key techniques study of remote sensing and geographic information system based landslide risk assessment[D]. Beijing: Chinese Academy of Geological Sciences, 2008. [石菊松. 基于遥感和地理信息系统的滑坡风险评估关键技术研究[D]. 北京: 中国地质科学院, 2008.]
    [16] Tang Yaming, Zhang Maosheng, Xue Qiang. Social risk assessments of the Hutoumao landslide in Yan′an City, Shaanxi, China[J] Geological Bulletin of China, 2008, 27(11): 1782-1786. [唐亚明, 张茂省, 薛强. 陕西延安市虎头峁滑坡社会风险评价[J]. 地质通报, 2008, 27(11): 1782-1786.]
    [17] Glade T, Crozier M, Smith P. Applying probability determination to refine landslide-triggering rainfall thresholds using an empirical “antecedent daily rainfall model”[J]. Pure and Applied Geophysics, 2000, 157(6/7/8): 1059-1079.
    [18] Miller S, Brewer T, Harris N. Rainfall thresholding and susceptibility assessment of rainfall-induced landslides: application to landslide management in St Thomas, Jamaica[J]. Bulletin of Engineering Geology and the Environment, 2009, 68(4): 539-550.
    [19] Chang K T, Chiang S H. An integrated model for predicting rainfall-induced landslides[J]. Geomorphology, 2009, 105(3/4): 366-373.
    [20] Ayalew L, Yamagishi H, Marui H, et al. Landslides in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparisons of results from two methods and verifications[J]. Engineering Geology, 2005, 81(4): 432-445.
    [2[1] Cong Weiqing, Pan Mao, Li Tiefeng, et al. Quantitative analysis of critical rainfall-triggered debris flows[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(1): 2808-2812. [丛威青, 潘懋, 李铁锋, 等. 降雨型泥石流临界雨量定量分析[J]. 岩石力学与工程学报, 2006, 25(1): 2808-2812.]
    [22] Qi Yuan, Liu Yong, Yang Zhenghua, et al. GIS-based analysis of landslide and debris flow hazard in Lanzhou[J]. Journal of Glaciology and Geocryology, 2012, 34(1): 96-104. [祁元, 刘勇, 杨正华, 等. 基于GIS的兰州滑坡与泥石流灾害危险性分析[J]. 冰川冻土, 2012, 34(1): 96-104.]
    [23] Zhao Cheng, Zhang Yongjun, Zhao Yuhong. Application of the hierarchical analytical methods to evaluating geological hazard tendency in Gansu Province[J]. Journal of Glaciology and Geocryology, 2009, 31(1): 182-187. [赵成, 张永军, 赵玉红. 层次分析法在甘肃省地质灾害易发性评价中的应用[J]. 冰川冻土, 2009, 31(1): 182-187.]
    [24] Li Tiefeng, Cong Weiqing. A method for rainfall-induced landslides prediction based on Logistic regression and effective antecedent rainfall[J]. The Chinese Journal of Geological Hazard and Control, 2006, 17(1): 33-35. [李铁锋, 丛威青. 基于Logistic回归及前期有效雨量的降雨诱发型滑坡预测方法[J]. 中国地质灾害防治学报, 2006, 17(1): 33-35.]
    [25] Zhang Guoping. Study on the relation between effective precipitation and landslide/debris-flow with probabilistic model[J]. Meteorological Monthly, 2014, 40(7): 886-890. [张国平. 有效雨量和滑坡泥石流灾害概率模型[J]. 气象, 2014, 40(7): 886-890.]
    [26] Zhang Ningning, Yan Xiaodong. Accuracy analysis and improvement of BIOME3 model used in China[J]. Climatic and Environmental Research, 2008, 13(1): 21-30. [张宁宁, 延晓冬. BIOME3模型在中国应用的精确度分析及其改进[J]. 气候与环境研究, 2008, 13(1): 21-30.]
    [27] Fieldings A H, Bell J F. A review of methods for the assessment of prediction errors in conservation presence/absence models[J]. Environmental Conservation, 1997, 24(1): 38-49.
    [28] Fang Miao, Zhang Jinlong, Xu Zhen. Landslide susceptibility zoning study in Lanzhou City based on GIS and Logistic regression model[J]. Remote Sensing Technology and Application, 2011, 26(6): 845-854. [方苗, 张金龙, 徐瑱. 基于GIS和Logistic回归模型的兰州市滑坡灾害敏感性区域研究[J]. 遥感技术与应用, 2011, 26(6): 845-854.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700