用户名: 密码: 验证码:
干旱荒漠区植物生态位对水盐的响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response of plant niche to soil moisture and salinity in an arid desert area of Xinjiang, China
  • 作者:郄亚栋 ; 滕德雄 ; 吕光辉
  • 英文作者:QIE Yadong;TENG Dexiong;Lü Guanghui;Key Laboratory of Oasis Ecology;College of Resources and Environment Science, Xinjiang University;Institute of Arid Ecology and Environment, Xinjiang University;
  • 关键词:变系数模型 ; 土壤水分和盐分 ; 群落组成 ; 生态位宽度 ; 生态位重叠
  • 英文关键词:nonlinear structure model;;soil moisture and salinity;;community composition;;niche breadth;;niche overlap
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:绿洲生态教育部重点实验室;新疆大学资源与环境科学学院;新疆大学干旱生态环境研究所;
  • 出版日期:2019-01-18 09:25
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:国家自然科学基金项目(31560131)
  • 语种:中文;
  • 页:STXB201908026
  • 页数:12
  • CN:08
  • ISSN:11-2031/Q
  • 分类号:259-270
摘要
全球气候变化对生态系统功能的影响决定着种群地位和群落演替,由于干旱区的特殊性成为研究生物响应环境变化的热点地区。为探索艾比湖流域荒漠区植物生态位对土壤水盐梯度的响应,在研究水、盐含量和植物生态位特征的基础上,应用变系数模型,分析了土壤水盐梯度下的群落组成和生态位响应趋势。结果显示:(1)随土壤水盐梯度的降低,艾比湖流域群落的物种组成呈倒"V"型分布,说明土壤水盐交互作用影响着植被分布和群落类型。(2)高水盐环境下,胡杨(Populus euphratica)、琵琶柴(Reaumuria soongorica)和梭梭(Haloxylon ammodendron)等生态位宽度值(B_i)较大,柽柳(Tamarix ramosissima)、骆驼刺(Alhagi sparsifolia)和甘草(Glycyrrhiza uralensis)等B_i较小;中水盐环境下,白刺(Nitraria schoberi)和琵琶柴的B_i较大,铃铛刺(Halimodendron halodendron)、甘草和盐节木(Halocnemum strobilaceum)的B_i较小;低水盐环境下,梭梭、花花柴(Karelinia caspica)和琵琶柴等B_i较大,盐节木的B_i较小;说明土壤水盐环境和物种生态学特性是影响B_i的重要因素。(3)物种水平上,B_i较大的种群与其他物种的生态位重叠(O_(ij))一般较大,但B_i较小的物种间的O_(ij)不一定小(例如:高水盐土壤环境下柽柳和骆驼刺的O_(ij)为1);群落水平上,B_i与O_(ij)具有一定的正相关性;说明由于资源纬度的相似性增大了低B_i物种间的O_(ij),并且B_i和O_(ij)由物种向群落尺度转换时,两者之间的关系存在冗余。(4)土壤水盐梯度与群落生态幅呈现一种非线性相关特征,高水盐格局对群落B_i有一定的促进效应,而低水盐模式对B_i具有一定的限制作用,表明土壤水盐的协同效应影响着物种在群落的地位,并在一定程度上决定了群落向正负两极演替的方向。
        The impact of global climate change on ecosystem function determines the status of population and community succession, and since arid areas are unique, they have become a hot spot for studying biological responses to environmental change. We used a sample plot method investigation to explore the response of plant niche to the soil water and salt gradient of the Ebinur Lake Basin. Based on a study of moisture, salt content, and plant niche characteristics for arid desert areas, the changes in community composition and niche responses to soil water and salt at different gradients were analyzed. The results showed the species composition of communities had a reverse "V" pattern along the water and salt environmental factor gradient(from high to low); these phenomena indicate that the interaction of water and salt concentration was the main reason the distribution of vegetation types was restricted. The niche breadth of Populus euphratica, Reaumuria soongorica, and Haloxylon ammodendron were larger than those of Tamarix ramosissima, Alhagi sparsifolia, and Glycyrrhiza uralensis at high saltwater soil environments. The niche breadth of Nitraria schoberi and Reaumuria soongorica were larger than those of Halimodendron halodendron, Glycyrrhiza uralensis, and Halocnemum strobilaceum at moderate saltwater soil environments. The niche breadth of Haloxylon ammodendron, Karelinia capsica, and Reaumuria soongorica were larger than those of Halocnemum strobilaceum at low saltwater soil environments. These phenomena indicate that the ecological niche of a population was not only determined by soil moisture and salinity, but also the ecological characteristics of the species in the desert area. At the species level, the niche overlap of the populations with large niche breadth between other species was generally large, but the niche overlap with smaller niche breadth species was not necessarily small; however, at the community level, there was a positive correlation between niche breadth and niche overlap. These phenomena indicate that a similarity in resource latitudes increased the niche overlap between the low niche breadth species, and the relationship between them was redundant when there was a transformation of niche breadth and niche overlap from the species to the community scale. The soil water and salt gradient showed a nonlinear correlation with community ecological amplitude. The distribution pattern of high water and salt in the soil had a certain promoting effect on the niche breadth of the community, while the distribution pattern of low water and low salt had a limited effect on niche breadth. The synergistic effect of soil water and salt determined the status of species in the community and determined the direction of community succession to the positive and negative poles.
引文
[1] Gilbert B,Lechowicz M J.Neutrality,niches,and dispersal in a temperate forest understory.Proceedings of the National Academy of Sciences of the United States of America,2004,101(20):7651- 7656.
    [2] Anacker B L,Strauss S Y.The geography and ecology of plant speciation:range overlap and niche divergence in sister species.Proceedings of the Royal Society B:Biological Sciences,2014,281(1778):20132980.
    [3] Cardillo M,Warren D L.Analysing patterns of spatial and niche overlap among species at multiple resolutions.Global Ecology and Biogeography,2016,25(8):951- 963.
    [4] 郝建锋,李艳,齐锦秋,裴曾莉,黄雨佳,蒋倩,陈亚.人为干扰对碧峰峡栲树次生林群落物种多样性及其优势种群生态位的影响.生态学报,2016,36(23):7678- 7688.
    [5] Arellano G,Umaňa M N,Macía M J,Loza M I,Fuentes A,Cala V,Jrgensen P M.The role of niche overlap,environmental heterogeneity,landscape roughness and productivity in shaping species abundance distributions along the Amazon-Andes gradient.Global Ecology and Biogeography,2017,26(2):191- 202.
    [6] Thuiller W.Biodiversity:climate change and the ecologist.Nature,2007,448(7153):550- 552.
    [7] Carboni M,Zelen.Measuring ecological specialization along a natural stress gradient using a set of complementary niche breadth indices.Journal of Vegetation Science,2016,27(5):892- 903.
    [8] Broennimann O,Thuiller W,Hughes G,Midgley G F,Alkemade J M R,Guisan A.Do geographic distribution,niche property and life form explain plants’ vulnerability to global change?Global Change Biology,2006,12(6):1079- 1093.
    [9] 陈玉凯,杨琦,莫燕妮,杨小波,李东海,洪小江.海南岛霸王岭国家重点保护植物的生态位研究.植物生态学报,2014,38(6):576- 584.
    [10] 段后浪,赵安,姚忠.恒湖农场茶叶港草洲枯水期湿地植物与土壤关系及种群生态位分析.生态学报,2017,37(11):3744- 3754.
    [11] Condit R,Ashton P S,Baker P,Bunyavejchewin S,Gunatilleke S,Gunatilleke N,Hubbell S P,Foster R B,Itoh A,LaFrankie J V,Lee H S,Losos E,Manokaran N,Sukumar R,Yamakura T.Spatial patterns in the distribution of tropical tree species.Science,2000,288(5470):1414- 1418.
    [12] Boulangeat I,Lavergne S,Van Es J,Garraud L,Thuiller W.Niche breadth,rarity and ecological characteristics within a regional flora spanning large environmental gradients.Journal of Biogeography,2012,39(1):204- 214.
    [13] Coudun C,Gégout J C.Ecological behaviour of herbaceous forest species along a pH gradient:a comparison between oceanic and semicontinental regions in northern France.Global Ecology and Biogeography,2005,14(3):263- 270.
    [14] Slatyer R A,Hirst M,Sexton J P.Niche breadth predicts geographical range size:a general ecological pattern.Ecology Letters,2013,16(8):1104- 1114.
    [15] Clavel J,Julliard R,Devictor V.Worldwide decline of specialist species:toward a global functional homogenization?Frontiers in Ecology and the Environment,2011,9(4):222- 228.
    [16] 贺强,崔保山,赵欣胜,付华龄.水、盐梯度下黄河三角洲湿地植物种的生态位.应用生态学报,2008,19(5):969- 975.
    [17] García-Baquero G,Silvertown J,Gowing D J,Valle C J.Dissecting the hydrological niche:soil moisture,space and lifespan.Journal of Vegetation Science,2016,27(2):219- 226.
    [18] 刘扬,施建敏,边子星,邓绍勇,裘利洪,张微微,缪伸义.鄱阳湖湿地灰化苔草群落物种多度分布格局沿水分梯度的变化.草业科学,2016,33(1):19- 26.
    [19] 彭舜磊,陈昌东,李彦娇,刘丹丹,赵干卿.白龟湖国家湿地公园植物群落数量分类及优势植物生态位分析.湿地科学,2016,14(5):619- 627.
    [20] Iturrate-Garcia M,O′Brien M J,Khitun O,Abiven S,Niklaus P A.Interactive effects between plant functional types and soil factors on tundra species diversity and community composition.Ecology and Evolution,2016,6(22):8126- 8137.
    [21] 张东梅,赵文智,罗维成.荒漠草原带盐碱地优势植物生态位与种间联结.生态学杂志,2018,37(5):1307- 1315.
    [22] Martorell C,Almanza-Celis C A I,Pérez-García E A,Sánchez-Ken J G.Co-existence in a species-rich grassland:competition,facilitation and niche structure over a soil depth gradient.Journal of Vegetation Science,2015,26(4):674- 685.
    [23] Wagner V,Chytr,Von Wehrden H,Brinkert A,Danihelka J,H?lzel N,Jansen F,Kamp J,Lustyk P,Merunková K,Palpurina S,Preislerová Z,Wesche K.Regional differences in soil pH niche among dry grassland plants in Eurasia.Oikos,2017,126(5):660- 670.
    [24] 龚雪伟,吕光辉.艾比湖流域杜加依林荒漠植物群落多样性及优势种生态位.生物多样性,2017,25(1):34- 45.
    [25] 张雅莉.艾比湖流域土壤盐渍化地区生态环境遥感监测研究[D].乌鲁木齐:新疆大学,2017.
    [26] 段后浪,赵安,姚忠.不同海拔高程梯度下鄱阳湖典型草洲植物群落物种-多度分布格局的模型拟合.植物科学学报,2017,35(3):335- 343.
    [27] 张金屯.数量生态学.北京:科学出版社,2004.
    [28] Levins R.Evolution in Changing Environments:Some Theoretical Explorations.Princeton:Princeton University Press,1968.
    [29] Colwell R K,Futuyma D J.On the measurement of niche breadth and overlap.Ecology,197l,52(4):567- 576.
    [30] Pianka E R.The structure of lizard communities.Annual Review of Ecology and Systematics,1973,4:53- 74.
    [31] Fan J Q,Zhang W Y.Statistical methods with varying coefficient models.Statistics and its Interface,2008,1(1):179- 195.
    [32] Sardans J,Janssens I A,Alonso R,Veresoglou S D,Rillig M C,Sanders T G,Carnicer J,Filella I,Farré-Armengol G,Peňuelas J.Foliar elemental composition of European forest tree species associated with evolutionary traits and present environmental and competitive conditions.Global Ecology and Biogeography,2015,24(2):240- 255.
    [33] Kuglerová L,Jansson R,?gren A,Laudon H,Malm-Ren?f?lt B.Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network.Ecology,2014,95(3):715- 725.
    [34] Zhu J T,Yu J J,Wang P,Yu Q,Eamus D.Distribution patterns of groundwater-dependent vegetation species diversity and their relationship to groundwater attributes in northwestern China.Ecohydrology,2013,6(2):191- 200.
    [35] Bonetti S,Feng X,Porporato A.Ecohydrological controls on plant diversity in tropical South America.Ecohydrology,2017,10(6):e1853.
    [36] Polle A,Chen S L.On the salty side of life:molecular,physiological and anatomical adaptation and acclimation of trees to extreme habitats.Plant,Cell & Environment,2015,38(9):1794- 1816.
    [37] 赵学春,来利明,朱林海,王健健,王永吉,周继华,姜联合,鲁洪斌,赵春强,郑元润.三工河流域琵琶柴群落特征与土壤因子的相关分析.生态学报,2014,34(4):878- 889.
    [38] 李学斌,陈林,李国旗,安慧.干旱半干旱地区围栏封育对甘草群落特征及其分布格局的影响.生态学报,2013,33(13):3995- 4001.
    [39] Pulla S,Suresh H S,Dattaraja H S,Sukumar R.Multidimensional tree niches in a tropical dry forest.Ecology,2017,98(5):1334- 1348.
    [40] Ralston J,DeLuca W V,Feldman R E,King D I.Population trends influence species ability to track climate change.Global Change Biology,2017,23(4):1390- 1399.
    [41] Germino M J,Reinhardt K,Jones R.Desert shrub responses to experimental modification of precipitation seasonality and soil depth:relationship to the two-layer hypothesis and ecohydrological niche.Journal of Ecology,2014,102(4):989- 997.
    [42] Bertrand R,Perez V,Perez J C.Disregarding the edaphic dimension in species distribution models leads to the omission of crucial spatial information under climate change:the case of Quercus pubescens in France.Global Change Biology,2012,18(8):2648- 2660.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700