用户名: 密码: 验证码:
基于CRN方法的重型燃气轮机燃烧室排放研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Emission of Heavy Duty Gas Turbine Combustor Based on CRN Approach
  • 作者:刘石 ; 蔡笋 ; 邓小文 ; 尹洪 ; 高庆水
  • 英文作者:LIU Shi;CAI Sun;DENG Xiaowen;YIN Hong;GAO Qingshui;Electric Power Research Institute of Guangdong Power Grid Co., Ltd.;
  • 关键词:低排放 ; 三维反应流 ; 化学反应器网络模型 ; 燃烧室 ; 反应机理
  • 英文关键词:low emission;;3D reaction flow;;chemical reaction network model;;combustor;;reaction mechanism
  • 中文刊名:GDDL
  • 英文刊名:Guangdong Electric Power
  • 机构:广东电网有限责任公司电力科学研究院;
  • 出版日期:2019-03-26 16:10
  • 出版单位:广东电力
  • 年:2019
  • 期:v.32;No.254
  • 基金:中国南方电网有限责任公司科技项目(K-GD2013-0492);; 中国博士后科学基金资助项目(2015M570696)
  • 语种:中文;
  • 页:GDDL201903010
  • 页数:8
  • CN:03
  • ISSN:44-1420/TM
  • 分类号:47-54
摘要
污染物排放快速预测及控制是重型燃气轮机燃烧室技术发展的重要问题。对燃用天然气的重型燃气轮机典型燃烧室结构进行三维燃烧流动数值模拟,根据模拟结果构建燃烧室特定的化学反应器网络(chemical reactor networks,CRN)模型,采用甲烷-空气的53种组分、325步详细反应机理,对不同负荷工况时燃烧室的NO_x排放进行仿真研究。所得结果表明:CRN方法的分析结果与测量值吻合较好,可为燃气轮机干式低NO_x(dry low NO_x, DLN)燃烧室的NO_x排放提供有效的快速预测手段。此外,还阐明了燃烧室头部值班级与主燃级的燃料分配及燃烧室进口空气温度对NO_x的排放量有明显影响,在燃烧室满负荷运行时,值班级燃料占总燃料量的比值为7%时,NO_x排放量最小;NO_x排放量随着燃烧室进口空气温度的升高而显著增大。
        Fast forecasting and control of pollutant emission is an important issue for technical development of the heavy duty gas turbine combustor. This paper makes 3 D combustion flow numerical simulation for the typical structure of the heavy duty gas turbine combustor and constructs specific chemical reactor network(CRN) model for the combustor according to simulated results. By employing a detailed reaction mechanism including 53 components and 325 steps of methane(CH_4)/air, it makes simulating research on NO_x emission in the combustor under different load conditions. The results indicate that the analysis result of CRN approach is in good agreement with measurement result, which means the CRN approach can provide effective fast forecasting means for NO_x emission in the dry low NO_x(DLN) combustor. In addition, the paper also states the ratios of pilot fuel and primary combustion fuel of and inlet air temperature of the combustor have obvious effects on NO_x emission. Under full load operation, when the ratio of pilot fuel is 7%, NO_x emission is the least. With rise of inlet air temperature of the combustor, NO_x emission will increase significantly.
引文
[1] 蒋洪德. 重型燃气轮机的现状和发展趋势[J]. 热力透平, 2012, 41(2): 83-88. JIANG Hongde. Development of the heavy-duty gas turbine[J]. Thermal Turbine, 2012, 41(2): 83-88.
    [2] 崔平, 林汝谋, 金红光, 等. 世界燃气轮机市场厂商与产品性能[J]. 燃气轮机术, 2004(2): 16-23. CUI Ping, LIN Rumou, JIN Hongguang, et al. Gas turbine manufacturers and products in the world[J]. Gas Turbine Technology, 2004(2): 16-23.
    [3] 彭志平, 赵庆敏, 邓小文. M701F3型燃气轮机降低NOx排放技术措施探讨[J]. 广东电力, 2014, 27(7):20-25. PENG Zhiping, ZHAO Qingmin, DENG Xiaowen. Measures to reduce NOx discharge for M701F3 gas turbine[J]. Guangdong Electric Power, 2014, 27(7):20-25.
    [4] 潘科锋, 卢如飞. V94.3A燃气轮机DLN混合型燃烧器的低NOx排放特性[J]. 发电设备, 2011(2): 102-105. PAN Kefeng, LU Rufei. Low NOxemission of DLN burner for V94.3A gas turbines[J]. Power Equipment, 2011(2): 102-105.
    [5] DAVIS L B, BLACK S H. Dry Low NOx combustion systems for GE heavy-duty gas turbines[R]. USA: GE Power Systems_GER-3568G, 1999.
    [6] 徐忆恩.M701F4型燃气发电机组TCA系统的优化[J]. 浙江电力,2017,36(4):64-67. XU Yi'en. Optimization of TCA system of M701F4 gas turbine generators[J]. Zhejiang Electric Power, 2017,36(4):64-67.
    [7] 林凡. M701F燃气轮机结构特点及燃烧调整方法分析[J]. 电气技术, 2013, 14(6):98-101. LIN Fan. Structural characteristics and analysis of combustion adjustment method of M701F gas turbine[J]. Electrical Engineering, 2013, 14(6):98-101.
    [8] 王峰, 肖俊峰, 李晓丰,等. 燃气轮机燃烧过程中污染物的生成机理[J]. 热力发电, 2015,44 (6):10-15. WANG Feng, XIAO Junfeng, LI Xiaofeng, et al. A chemical mechanism of pollutants formation during combustion in gas turbines[J]. Thermal Power Generation, 2015,44 (6):10-15.
    [9] 李晓丰, 肖俊峰, 王玮, 等. 重型燃气轮机燃烧室压力变化对NOx排放的影响[J]. 热力发电, 2017, 46(9):53-58,64. LI Xiaofeng, XIAO Junfeng, WANG Wei, et al. Influence of combustor pressure on NOx emission of a heavy duty gas turbine numerical study[J]. Thermal Power Generation, 2017, 46(9):53-58,64.
    [10] TACINA R, MAO C P, WEY C. Experimental investigation of a multiplex fuel injector module with discrete jet swirlers for low emission combustors[R]. USA:AIAA, 2004.
    [11] 邵志伟, 包卫忠, 陈模嘉.重型燃气轮机简单循环燃烧试验[J]. 热力发电,2018,47(11):129-134. SHAO Zhiwei, BAO Weizhong, CHEN Mojia. Experiments on simple cycle combustion of heavy duty gas turbines[J]. Thermal Power Generation,2018,47(11):129-134.
    [12] 沈亚洲,付忠广,石黎, 等.当量比对干式低排放燃烧室燃烧及NOx生成影响的数值研究[J]. 热力发电,2017, 47(7):46-53. SHEN Yazhou, FU Zhongguang, SHI Li, et al. Numerical simulation of influence of equivalence ratio on combustion and NOx formation in a DLE combustor[J]. Thermal Power Generation,2017, 47(7):46-53.
    [13] NIJEHOLT J, KOMEN E, VERHAGE A, et al. First assessment of biogas co-firing on the GE MS9001FA gas turbine using CFD[C]//Proceedings of ASME Turbo Expo 2008. USA:ASME,2008.
    [14] 段冬霞. 燃气轮机燃烧室参数CFD模拟方法的研究和应用 [D]. 北京:中国科学院工程热物理研究所,2011.
    [15] 包文飞,李明,牟影,等. R0110重型燃气轮机分级燃烧室NOx排放试验研究[J]. 航空发动机, 2013(6:)59-62,78. BAO Wenfei, LI Ming, MOU Ying, et al. Experimental research on NOx emission of staged combustor for R0110 heavy-duty gas turbine[J]. Aeroengine, 2013(6): 59-62,78.
    [16] 崔玉峰. 合成气燃气轮机燃烧室数值模拟与试验研究 [D]. 北京:中国科学院工程热物理研究所,2005.
    [17] 杨小龙. 燃气轮机燃烧室化学反应器网络模型研究[D]. 北京:中国科学院工程热物理研究所,2009.
    [18] KAYAKOL N, SELCUK N, CAMPBELL I, et al. Performance of discrete ordinates method in a gas turbine combustor simulatior[J]. Experimental Thermal Fluid Science, 21(2000):134-141.
    [19] GREG S. GRI-Mech 3.0[EB/OL]. 2012-10-20.Chicago: Gas Research Institute. http:// www.me.berkeley.edu/ Gri_Mech / release. Html .项目简介:申请单位广东电网有限责任公司电力科学研究院项目名称大型燃气轮机振荡燃烧机理及其调整技术研究项目概述以某重型燃气轮机为主要研究对象,建立典型燃烧室全尺寸数值计算模型,研究燃气轮机振荡燃烧机理,开发燃烧压力波动状态监测系统,提出了燃烧优化调整方法。主要创新点针对某重型燃气轮机燃烧室建立了一套预测污染排放的CRN模型,其特点是相比于其他数值模拟方法,该方法能够更加快速的预测污染物排放。在不同工况下模拟结果与实际测量值吻合较好,证明分析方法是可信的。基于所建立的CRN模型开展了燃料配比与燃烧室进口空气温度对排放特性的影响研究。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700