用户名: 密码: 验证码:
奇异变形杆菌毒力因子的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Advances in Virulence Factors of Proteus mirabilis
  • 作者:陈小敏 ; 杨华 ; 桂国弘 ; 温雪婷 ; 戴宝玲 ; 肖英平
  • 英文作者:CHEN Xiao-min;YANG Hua;GUI Guo-hong;WEN Xue-ting;DAI Bao-ling;XIAO Ying-ping;Coll.of Animal Sci.of Zhejiang Uni.;Inst.of Qual.& Stand.for Agro-prod.,Zhejiang Acad.of Agric.Sci.;State Key Lab.of Breeding Base for Zhejiang Sustainable Pest and Dis.Ctl.,Zhejiang Acad.of Agric.Sci.;
  • 关键词:奇异变形杆菌(Proteus ; mirabilis ; PM) ; 尿路感染 ; 毒力因子
  • 英文关键词:Proteus mirabilis;;urinary tract infections;;virulence factors
  • 中文刊名:WSWX
  • 英文刊名:Journal of Microbiology
  • 机构:浙江大学动物科学学院;浙江省农业科学院农产品质量标准研究所;浙江省植物有害生物防控省部共建国家重点实验室培育基地;
  • 出版日期:2019-02-15
  • 出版单位:微生物学杂志
  • 年:2019
  • 期:v.39
  • 基金:浙江省公益技术研究项目(2016C32073);; 杭州市科技局社会发展项目(20150533B77)
  • 语种:中文;
  • 页:WSWX201901019
  • 页数:6
  • CN:01
  • ISSN:21-1186/Q
  • 分类号:115-120
摘要
奇异变形杆菌是革兰阴性细菌,在自然界中广泛存在,具有特殊的群集运动能力,与临床关系密切,可在膀胱和肾脏中形成结石,在尿道留置管外表面、内腔中形成结晶生物膜,是引起复杂尿路感染的主要病原体,主要的毒力因子包括菌毛、黏附素、尿素酶、溶血素、金属摄取和免疫逃避等。综述了近年来有关奇异变形杆菌毒力因子的研究,为相关研究提供参考。
        Proteus mirabilis is a Gram-negative bacterium with a special assembly moving ability, and widely exists in the natural environment. It has a close relationship with the clinic such as its extraordinary ability to cause complicated urinary tract infections(UTI). Some stones can be shaped by Proteus mirabilis in bladder and kidney and form a crystalline biofilm on the surface outer and inner cavity of the urethral indwelling catheter, it is the main pathogen causing complex urinary tract infections. The main virulence factors include fimbrae or pilus, adhesin, urease, hemolysin, metals intake and immune escape and so on. This article reviews some studies in virulence factors of Proteus mirabilis, aiming to deepen the understanding of the microorganism and provide reference for the subsequent studies to come.
引文
[1] Hauser G. Uber Fauslnisbakterien und deren Beziehun zur Septic?mie[J]. FGW Vogel, Liepzig, Germany, 1885: 2-30.
    [2] Schappert S, Rechtsteiner E. Ambulatory medical care utilization estimates for 2007[J]. Vital and Health Statistics Series 13, Data from the National Health Survey, 2011, (169): 1-38.
    [3] Foris L, Snowden J. Proteus Mirabilis Infections[J].Wastington D.C.:NeBI, 2017: 5-44.
    [4] Schaffer JN, Norsworthy AN, Sun T-T, et al. Proteus mirabilis fimbriae-and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation[J]. Proceedings of the National Academy of Sciences, 2016, 113(16): 4494-4499.
    [5] Scavone P, Iribarnegaray V, Caetano AL, et al. Fimbriae have distinguishable roles in Proteus mirabilis biofilm formation[J]. FEMS Pathogens and Disease, 2016, 74(5): ftw033.
    [6] Pellegrino R, Scavone P, Umpiérrez A, et al. Proteus mirabilis uroepithelial cell adhesin (UCA) fimbria plays a role in the colonization of the urinary tract[J]. Pathogens and disease, 2013, 67(2): 104-107.
    [7] Scavone P, Villar S, Umpiérrez A, et al. Role of Proteus mirabilis MR/P fimbriae and flagella in adhesion, cytotoxicity and genotoxicity induction in T24 and Vero cells[J]. Pathogens and disease, 2015, 73(4): ftv017.
    [8] Pearson MM, Yep A, Smith SN, et al. Transcriptome of Proteus mirabilis in the murine urinary tract: virulence and nitrogen assimilation gene expression[J]. Infection and immunity, 2011, 79(7): 2619-2631.
    [9] Kuan L,Schaffer JN, Zouzias CD, et al. Characterization of 17 chaperone-usher fimbriae encoded by Proteus mirabilis reveals strong conservation[J]. Journal of medical microbiology, 2014, 63(7): 911-922.
    [10] Bode NJ, Debnath I, Kuan L, et al. Transcriptional aalysis of the MrpJ network: modulation of diverse virulence-associated genes and direct regulation of mrp fimbrial and flhDC flagellar operons in Proteus mirabilis[J]. Infection and immunity, 2015, 83(6): 2542-2556.
    [11] Debnath I, Pearson M. MP8-17 REGULATION OF PROTEUS MIRABILIS VIRULENCE BY MRPJ[J]. Journal of Urology, 2014, 191(4): e80-e81.
    [12] Schaffer JN, Norsworthy AN, Sun TT, et al. Proteus mirabilis fimbriae- and urease-dependent clusters assemble in an extracellular niche to initiate bladder stone formation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(16): 4494.
    [13] Armbruster CE, Smith SN, Johnson AO, et al. The Pathogenic Potential of Proteus mirabilis Is Enhanced by Other Uropathogens during Polymicrobial Urinary Tract Infection[J]. Infection & Immunity, 2017, 85(2): IAI.00808-00816.
    [14] RodrigoLigabue-Braun, RafaelReal-Guerra, Reginacarlini CL, et al. Evidence-based docking of the urease activation complex[J]. Journal of Biomolecular Structure & Dynamics, 2013, 31(8): 854.
    [15] Konieczna I, Zarnowiec P, Kwinkowski M, et al. Bacterial urease and its role in long-lasting human diseases[J]. Current Protein & Peptide Science, 2012, 13(8): 789.
    [16] Subashchandrabose S, Mobley HLT. Back to the metal age: battle for metals at the host-pathogen interface during urinary tract infection[J]. Metallomics Integrated Biometal Science, 2015, 7(6): 935.
    [17] SD H, MM P, CJ A, et al. Proteobactin and a yersiniabactin-related siderophore mediate iron acquisition in Proteus mirabilis[J]. Molecular Microbiology, 2010, 78(1): 138-157.
    [18] EL F, L M, HL M. Identification of a modular pathogenicity island that is widespread among urease-producing uropathogens and shares features with a diverse group of mobile elements[J]. Infection and immunity, 2009, 77(11): 4887-4894.
    [19] Nielubowicz GR, Smith SN, Mobley HL. Zinc uptake contributes to motility and provides a competitive advantage to Proteus mirabilis during experimental urinary tract infection[J]. Infection & Immunity, 2010, 78(6): 2823.
    [20] Armbruster CE, Forsyth-Deornellas V, Johnson AO, et al. Genome-wide transposon mutagenesis of Proteus mirabilis: Essential genes, fitness factors for catheter-associated urinary tract infection, and the impact of polymicrobial infection on fitness requirements[J]. Plos Pathogens, 2017, 13(6): e1006434.
    [21] Dupont CL, Grass G, Rensing C. Copper toxicity and the origin of bacterial resistance--new insights and applications[J]. Metallomics Integrated Biometal Science, 2011, 3(11): 1109.
    [22] Hodgkinson V, Petris MJ. Copper homeostasis at the host-pathogen interface[J]. Journal of Biological Chemistry, 2012, 287(17): 13549-13555.
    [23] Furlong EJ, Lo AW, Kurth F, et al. A shape-shifting redox foldase contributes to Proteus mirabilis copper resistance[J]. Nature Communications, 2017, 8: 16065.
    [24] Floresmireles AL, Walker JN, Caparon M, et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options[J]. Nature Reviews Microbiology, 2015, 13(5): 269.
    [25] Dzutsev A, Trinchieri G. Proteus mirabilis: the enemy within[J]. Immunity, 2015, 42(4): 602-604.
    [26] Adamczak K, Weaver T. Effects of lysine mutations on the structure and function of hemolysin A from Proteus mirabilis (755.4)[J]. The FASEB Journal, 2013,67(2):104-107.
    [27] Chaban B, Hughes HV, Beeby M. The flagellum in bacterial pathogens: For motility and a whole lot more[J]. Seminars in Cell & Developmental Biology, 2015, 46: 91.
    [28] Haiko J, Westerlund-Wikstr?m B. The role of the bacterial flagellum in adhesion and virulence[J]. Biology, 2013, 2(4): 1242-1267.
    [29] Umpiérrez A, Scavone P, Romanin D, et al. Innate immune responses to Proteus mirabilis flagellin in the urinary tract[J]. Microbes & Infection, 2013, 15(10-11): 688-696.
    [30] H?iby N, Bjarnsholt T, Moser C, et al. ESCMID guideline for the diagnosis and treatment of biofilm infections 2014[J]. Clinical Microbiology & Infection, 2015, 21(Suppl. S1): S1.
    [31] Fusco A, Coretti L, Savio V, et al. Biofilm Formation and Immunomodulatory Activity of Proteus mirabilis Clinically Isolated Strains[J]. International journal of molecular sciences, 2017, 18(2): 414.
    [32] Peng L, Jiang Q, Pan JY, et al. Involvement of polyphosphate kinase in virulence and stress tolerance of uropathogenic Proteus mirabilis[J]. Medical microbiology and immunology, 2016, 205(2): 97-109.
    [33] Wang MC, Chien HF, Tsai YL, et al. The RNA chaperone Hfq is involved in stress tolerance and virulence in uropathogenic Proteus mirabilis[J]. PloS one, 2014, 9(1): e85626.
    [34] Tsai YL, Chien HF, Huang KT, et al. cAMP receptor protein regulates mouse colonization, motility, fimbria-mediated adhesion, and stress tolerance in uropathogenic Proteus mirabilis [J]. Scientific Reports, 2017, 7(1): 7282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700