用户名: 密码: 验证码:
水稻幼穗与Ustilaginoidea virens互作早期的转录组分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Transcriptomic analysis of early interaction between rice young spikelets and Ustilaginoidea virens
  • 作者:韩彦卿 ; 韩渊怀 ; 张春来 ; 孙文献
  • 英文作者:HAN Yan-qing;HAN Yuan-huai;ZHANG Chun-lai;SUN Wen-xian;College of Agriculture,Shanxi Agricultural University;Institute of Agricultural Bioengineering,Shanxi Agricultural University;College of Plant Protection,China Agricultural University;
  • 关键词:水稻 ; 稻曲病菌 ; 转录组 ; 基因表达 ; 互作机制
  • 英文关键词:rice;;Ustilaginoidea virens;;transcriptome;;gene expression;;interaction mechanism
  • 中文刊名:ZWBL
  • 英文刊名:Acta Phytopathologica Sinica
  • 机构:山西农业大学农学院;山西农业大学生物工程研究所;中国农业大学植物保护学院;
  • 出版日期:2018-12-11 14:40
  • 出版单位:植物病理学报
  • 年:2019
  • 期:v.49
  • 基金:山西农业大学博士启动科技创新基金(2016YJ06);; 山西省百人计划合作共建项目(晋组2017-30)
  • 语种:中文;
  • 页:ZWBL201903002
  • 页数:10
  • CN:03
  • ISSN:11-2184/Q
  • 分类号:11-20
摘要
由子囊菌门真菌稻绿核菌Ustilaginoidea virens引起的稻曲病是世界范围内水稻生产上的重要病害之一。但是,对水稻抗稻曲病的抗性机制仍不清楚。为初步探明水稻与稻曲病菌之间互作早期的分子调控机制,本研究采用比较转录组测序技术对稻曲病菌接种抗病品种‘IR28’和感病品种‘两优培九’(LYP9) 6 h的测序数据进行了分析,试图初步阐明水稻抗病分子机制。分析发现,在抗病和感病品种中均差异表达基因有1 005个共表达,在这些基因中,抗病品种中表达上调基因(697个)多于感病品种中表达上调的基因(626个),下调的基因(308个)少于感病品种中下调表达的基因(379个);随后通过GO富集和KEGG代谢途径分析,发现苯丙烷类代谢途径和双萜植保素合成途径相关的基因、几丁质酶、β-1,3-葡聚糖酶、糖基水解酶和过氧化物酶等基因在抗病品种中被显著诱导上调表达,而在感病品种中基因表达低于抗病品种或下调表达,推测这些基因很可能在水稻与稻曲病菌识别早期发挥重要的抗病作用。该研究结果可为水稻抗稻曲病基因克隆及抗稻曲病分子育种提供理论基础。
        Rice false smut,caused by Ustilaginoidea virens,is a major threat to rice production worldwide,but the mechanisms underlying rice resistance to U. virens remain elusive. To understand molecular bases underlying the initial interaction between rice and U. virens,transcriptional changes associated with the early stage of U. virens infection in the resistant ‘IR28' and susceptible ‘LYP9' rice cultivars were analyzed using the transcriptome analyses. The results demonstrated that 1 005 differentially expressed genes( DEGs) were common to ‘IR28' and‘LYP9',Among common DEGs shared in both cultivars with the isolate P1 at 6h post inoculation.More genes were up-regulated in ‘IR28'( 697) than in ‘LYP9'( 626) while fewer DEGs( 308) in ‘IR28' were down-regulated than those( 379) in ‘LYP9'. GO enrichment and KEGG metabolic pathway analysis revealed that phenylpropanoid biosynthesis,diterpene phytoalexin biosynthetic genes,chitinase beta-1,3-glucan,glycosyl hydrolase and peroxidase genes were specifically induced in the resistant variety,while these DEGs were down-regulated or less induced in the susceptible cultivar,implying that these genes may play an important role in disease resistance at the early stage of U. virens infection. Our results provide a theoretical basis for further exploitation of rice resistance genes and for molecular breeding of false smut-resistance rice.
引文
[1]Fan J,Yang J,Wang Y Q,et al.Current understanding on Villosiclava virens,a unique flow er-infecting fungus causing rice false smut disease[J].Molecular Plant Pathology,2016,17(9):1321-1330.
    [2]Koiso Y,Li Y,Iwasaki S,et al.Ustiloxins,antimitotic cyclic peptides from false smut balls on rice panicles caused by Ustilaginoidea virens[J].Journal of Antibiotics.1994,47(7):765-73.
    [3]Zhou Y L,Pan Y J,Xie X W,et al.Genetic diversity of rice false smut fungus,Ustilaginoidea virens and its pronounced differentiation of populations in North China[J].Journal of Phytopathology,2008,156(9):559-564.
    [4]Ludue1a R F,Roach M C,Prasad V,et al.Interaction of ustiloxin A with bovine brain tubulin[J].Biochemical Pharmacology,1994,47(9):1593-9.
    [5]Liu W P.Study on inducement of peanut chitinase activity by Aspergilus flavus,Phoma arachidicola and salicylic acid(in Chinese)[D].Qingdao:Qingdao Agricultural University(青岛:青岛农业大学),2011.
    [6]Bellincampi D,Cervone F,Lionetti V.Plant cell wall dynamics and w all-related susceptibility in plant-pathogen interactions[J].Frontiers in Plant Science,2014,5(228):228.
    [7]Yang C,Li W,Cao J,et al.Activation of ethylene signaling pathways enhances disease resistance by regulating ROS and phytoalexin production in rice[J].Plant Journal for Cell&Molecular Biology,2016,89(2):338.
    [8]Han Y,Zhang K,Yang J,et al.Differential expression profiling of the early response to Ustilaginoidea virens,between false smut resistant and susceptible rice varieties[J].BM C Genomics,2015,16(1):955.
    [9]Yuan Z,Zhang Y,Xu G,et al.Comparative transcriptome analysis of rhizoctonia solani-resistant andsusceptible rice cultivars reveals the importance of pathogen recognition and active immune responses in host resistance[J].Journal of Plant Biology,2018,61(3):143-158.
    [10]Bagnaresi P,Biselli C,OrrùL,et al.Comparative transcriptome profiling of the early response to Magnaporthe oryzae in durable resistant vs susceptible rice(Oryza sativa L.)genotypes[J].PLoS One,2012,7(12):e51609.
    [11]Xiao J,Jin X,Jia X,et al.Transcriptome-based discovery of pathways and genes related to resistance against Fusarium head blight in wheat landrace Wangshuibai[J].BM C Genomics,2013,14(1):1-19.
    [12]Chao J,Jin J,Wang D,et al.Cytological and transcriptional dynamics analysis of host plant revealed stage-specific biological processes related to compatible rice-Ustilaginoidea virens interaction[J].PLoSOne,2014,9(3),e91391.
    [13]Li R,Yu C,Li Y,et al.SOAP2:an improved ultrafast tool for short read alignment[J].Bioinformatics,2009,25(15):1966-7.
    [14]Nagalakshmi U,Wang Z,Waern K,et al.The transcriptional landscape of the yeast genome defined by RNA sequencing[J].Science,2008,320(5881):1344-9.
    [15]de Hoon M,Imoto S,Nolan J,et al.Open Source Clustering Software[J].Bioinformatics,2004,20(9):1453-54.
    [16]Livak K J,Schmittgen T D.Analysis of relative gene expression data using realtime quantitative PCR and the2-ΔΔCTM ethod[J].M ethods,2001,25(4):402-8.
    [17]Yang X,Lin T,Ruan H,et al.Effect of false smut on yield of rice and disease resistance detection of new rice varieties(in Chinese)[J].Chinese Journal of Tropical Crops(热带作物学报),2013,34(7):1309-1313.
    [18]Ahonsi M O,Adeoti A A,Singh B N.Evaluation of seven rice genotypes for resistance to false smut(Ustilaginoidea virens(cooket)tak.)under upland condition[J].ASSET:An International Journal(Series A),2001,1(2):57-64.
    [19]Hasegawa M,Mitsuhara I,Seo S,et al.Phytoalexin accumulation in the interaction between rice and the blast fungus[J].Molecular Plant-Microbe Interactions,2010,23(8):1000-11.
    [20]Grayer R J,Kokubun T.Plant-fungal interactions:the search for phytoalexins and other antifungal compounds from higher plants[J].Phytochemistry,2001,56(3):253-63.
    [21]Okada K.The biosynthesis of isoprenoids and the mechanisms regulating it in plants[J].Bioscience,Biotechnology,and Biochemistry,2011,75(7):1219-25.
    [22]Jiang X,Li Z,Kang Z.The recent progress of research on peroxidase in plant disease resistance(in Chinese)[J].Journal of Northw est Sci-Tech University of Agriculture and Forestry(西北农林科技大学学报(自然科学版)),2001,29(6):124-129.
    [23]Garcia P,So lo rzano E,Peteira B,et al.Induction of peroxidase and chitinase activity by Alternaria solani in five tomato cultivars with different susceptibility degree to this fungus[J].Revista Protección Vegetal,1998,13(2):91-95.
    [24]Bo L,Xue X D,Cui S P,et al.Cloning and characterization of a wheatβ-1,3-glucanase gene induced by the stripe rust pathogen Puccinia striiformis f.sp.tritici.[J].Molecular Biology Reports,2010,37(2):1045-1052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700