用户名: 密码: 验证码:
二氧化碳在多孔水泥充填材料中的扩散与反应动力学响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Dynamic response of carbon dioxide diffusion and reaction in porous cementitious back-filling material
  • 作者:王鹏 ; CHEN ; Shen’en ; 陈占清 ; 茅献彪
  • 英文作者:WANG Peng;CHEN Shen'en;CHEN Zhanqing;MAO Xianbiao;School of Mechanics and Civil Engineering,China University of Mining & Technology;Department of Civil and Environmental Engineering,University of North Carolina at Charlotte;
  • 关键词:水泥充填胶结材料 ; CO2 ; 扩散 ; 反应速率 ; 反应级数 ; 质量浓度
  • 英文关键词:cemented back-filling material;;carbon dioxide;;diffusion;;reaction rate;;reaction order;;mass concentration
  • 中文刊名:KSYL
  • 英文刊名:Journal of Mining & Safety Engineering
  • 机构:中国矿业大学力学与土木工程学院;美国北卡罗来纳大学夏洛特分校土木与环境工程学院;
  • 出版日期:2019-03-15
  • 出版单位:采矿与安全工程学报
  • 年:2019
  • 期:v.36;No.143
  • 基金:国家自然科学基金项目(51304207);; 江苏省煤基CO2捕集与地质存储重点实验室开放基金项目(2016A03)
  • 语种:中文;
  • 页:KSYL201902023
  • 页数:7
  • CN:02
  • ISSN:32-1760/TD
  • 分类号:171-177
摘要
综合运用反应动力学和连续介质力学理论,建立了CO_2在水泥孔隙介质扩散的过程中含有10个质量浓度和7个反应速率的化学反应动力学模型,并利用遗传算法对模型中9个决策参量分别进行了优化。通过数值模拟研究了孔隙度、扩散系数、扩散速率、反应级数、反应速率和组分浓度沿试样高度方向分布特征。研究表明:1)孔隙度、扩散系数和扩散速率沿试样高度方向单调减小,随时间单调增大。2)当反应持续到12,24,48 h,上下端CO_2质量浓度差依次减小3.03,1.99,1.62kg/m3。3)在试样上端面附近CO_2质量浓度随单调减小,在试样下端面附近质量浓度随单调增大,在中间截面上质量浓度先升后降。4)由于反应级数的跳跃,氢氧化钙、硅酸三钙和CO_2质量浓度及其变化率出现轻微的抖动。根据数值模拟结果与实验结果对比表明该模型可以精确的分析CO_2在多孔水泥充填材料中的吸附过程,可以定量定性的分析CO_2矿物碳酸化存储效果。
        Based on the theory of reaction kinetics and continuum mechanics, a chemical reaction kinetics model with ten mass concentrations and seven reaction rates in the diffusion process of carbon dioxide in cementitious pore media was established. The distribution characteristics of porosity, diffusion coefficient, diffusion rate, reaction series, reaction rate and component concentration along the sample height was discussed by numerical simulation. The results state that: 1) the porosity, diffusion coefficient, and diffusion rate decrease monotonously along the height of the sample and increase monotonously with time. 2) When the reaction lasts for 12, 24 and 48 hours, the difference between the upper and lower CO_2 mass concentration decreases by 3.03, 1.99 and 1.62 kg/m~3. 3) The mass concentration of carbon dioxide near the upper-end face of the sample decreases with monotone, while the mass concentration near the lower end face increases with monotone. 4) Due to the jump of the reaction series, the mass concentrations of calcium hydroxide, tricalcium silicate and carbon dioxide and their change rates appeared slight jitter. The comparison between numerical simulation results and experimental results indicates that the numerical model can accurately analyze the adsorption process of carbon dioxide in porous cement filling materials and quantitatively and qualitatively analyze the carbonation storage effect of carbon dioxide minerals.
引文
[1]缪协兴,张继雄,郭广礼.综合机械化固体废物充填采煤方法与技术[M].徐州:中国矿业大学出版社,2010:18-30
    [2]PAN S Y,CHANG E E,CHIANG P C.CO2 capture by accelerated carbonation of alkaline wastes:a review on its principles and applications[J].Aerosol and Air Quality Research,2012,12(5):770-791.
    [3]钱鸣高,缪协兴,许家林,等.论科学采矿[J].采矿与安全工程学报,2008,25(1):1-10.QIAN Minggao,MIAO Xiexing,XU Jialin,et al.On scientized mining[J].Journal of Mining&Safety Engineering,2008,25(1):1-10.
    [4]常庆粮.膏体充填控制覆岩变形与地表沉陷的理论研究与实践[D].徐州:中国矿业大学,2009.
    [5]BERT METZ O D,HELEEN DE CONINCK,MANUELA LOOS,et al.Carbon dioxide capture and storage[M].Cambridge University Press,2005:319-338.
    [6]BACHU S,BONIJOLY D,BRADSHAW J,et al.CO2storage capacity estimation:methodology and gaps[J].International Journal of Greenhouse Gas Control,2007,1(4):430-443.
    [7]RONALD E.HESTER R M H.Carbon capture:sequestration and storage[M].Cambridge:Royal Society of Chemistry Press,2010:67-81.
    [8]周来.深部煤层处置CO2多物理耦合过程的实验与模拟[D].徐州:中国矿业大学,2009.
    [9]HUIJGEN W J J,COMANS R N J.Carbon dioxide sequestration by mineral carbonation literature review update 2003-2004[M].Netherlands:Energy Research center of Netherlands ECN,2005:37.
    [10]KLEIN F,GARRIDO C J.Thermodynamic constraints on mineral carbonation of serpentinized peridotite[J].Lithos,2011,126(3):147-160.
    [11]KREVOR S C M,LACKNER K S.Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration[J].International Journal of Greenhouse Gas Control,2011,5(4):1073-1080.
    [12]MONTES-HERNANDEZ G,PéREZ-LóPEZ R,RENARD F,et al.Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash[J].Journal of Hazardous Materials,2009,161(2):1347-1354.
    [13]OELKERS E H,GISLASON S R,MATTER J.Mineral carbonation of CO2[J].Elements,2008,4(5):333-337.
    [14]ULIASZ-BOCHE?CZYK A.Waste used for CO2bonding via mineral carbonation[J].Gospodarka Surowcami Mineralnymi,2007,23(4):121-128.
    [15]ZEVENHOVEN R,FAGERLUND J,SONGOK J K.CO2 mineral sequestration:developments toward largescale application[J].Greenhouse Gases:Science and Technology,2011,1(1):48-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700