用户名: 密码: 验证码:
低温多效海水淡化铝合金换热管的化学清洗
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chemical Cleaning of Aluminium Alloy Heat Exchanger Tube in Low Temperature Multi-effect Seawater Desalination System
  • 作者:靳亚鹏 ; 吴芸芳 ; 崔振东 ; 高丽丽 ; 尹建华 ; 王维珍
  • 英文作者:JIN Ya-peng;WU Yun-fang;CUI Zhen-dong;GAO Li-li;YIN Jian-hua;WANG Wei-zhen;The Institute of Seawater Desalination and Multipurpose Utilization,MNR(Tianjin);
  • 关键词:低温多效海水淡化 ; 铝合金换热管 ; 结垢 ; 化学清洗 ; 氨基磺酸 ; 缓蚀剂
  • 英文关键词:low temperature multi-effect sea water desalination;;aluminum alloy heat exchanger tube;;scaling;;chemical cleaning;;sulfamic acid;;corrosion inhibitor
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:自然资源部天津海水淡化与综合利用研究所;
  • 出版日期:2019-02-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:十三五”国家重点研发计划(2017YFC0404100);; 中央级公益性科研院所基本科研业务费专项资金项目(K-JBYWF-2017-G5,K-JBYWF-2017-T04)~~
  • 语种:中文;
  • 页:BMJS201902030
  • 页数:7
  • CN:02
  • ISSN:50-1083/TG
  • 分类号:210-216
摘要
目的研究低温多效海水淡化系统铝合金换热管的化学清洗技术及现场应用。方法利用X射线荧光光谱分析现场铝合金换热管垢样成分,采用旋转挂片腐蚀模拟试验对5052铝合金试样在不同清洗介质下的腐蚀速率进行测试,并对不同浓度下的缓蚀剂性能进行评价。在现场应用中,通过监测系统pH值、钙镁离子浓度、铝合金试样现场腐蚀速率以及铝合金换热管表面形貌,对清洗过程进行控制,评价清洗效果。结果现场铝合金换热管结垢主要成分为Ca CO3及Ca SO4。所选清洗介质中,铝合金在盐酸中的腐蚀速率最大,在柠檬酸中的腐蚀速率最小,结合腐蚀性及溶垢能力,选择氨基磺酸为酸洗剂。40℃下,铝合金在4%氨基磺酸溶液中的腐蚀速率为1.434 mm/a,添加质量浓度为2 g/L的HSD103酸洗缓蚀剂后,腐蚀速率降低至0.084 mm/a,缓蚀效率为94.14%,此后继续增加缓蚀剂浓度,并未明显提升缓蚀效率。现场应用中,铝合金腐蚀挂片平均腐蚀速率为0.146 mm/a,缓蚀效率达到90%。现场清洗约21 h后达到酸洗终点,pH稳定在2左右,钙镁离子浓度无明显上升,铝合金表面垢层清除。结论以氨基磺酸为清洗介质可有效清除铝合金换热管表面Ca CO3及Ca SO4垢,HSD103酸洗缓蚀剂对铝合金有明显的保护作用,现场应用取得了优良的清洗效果。
        The work aims to investigate the chemical cleaning technology of aluminum alloy heat exchanger tube in lowtemperature multi-effect desalination system and put the technology into field use. The chemical composition of scale on thealuminum alloy heat exchanger tube was analyzed by X-ray fluorescence spectroscopy(XRF). The corrosion rate of 5052 alu-minum alloy in different cleaning agents was tested and the corrosion inhibition efficiency at different concentrations of corro-sion inhibitors was evaluated in rotary coupon corrosion simulation test. During the field application, pH, Ca2+, Mg2+ concentra-tion of the system and corrosion rate of aluminum alloy were monitored to control the cleaning process and evaluate the clean-ing effect. Main components of heat exchange tube scale were CaCO3 and CaSO4. In the selected cleaning agents, aluminum al-loy corrosion rate was the highest in hydrochloric acid and the minimal in citric acid. Sulfamic acid was selected as the alumi-num alloy heat exchanger tube cleaning agent because of corrosion and scale removal ability. At 40 ℃, the corrosion rate ofaluminum alloy in 4% sulfamic acid without and with 2 g/L HSD103 inhibitor was 1.434 mm/a and 0.084 mm/a respectively,which indicated that the corrosion inhibition efficiency was 94.14%. After that, increasing the corrosion inhibitor concentrationdid not obviously improve the corrosion inhibition efficiency. In the field, the average corrosion rate of aluminum alloy couponswas 0.146 mm/a and the corrosion inhibition efficiency was 90%. The acid cleaning process ended up after 21 h. After acidcleaning, the pH was stable around 2, the concentration of Ca2+ and Mg2+ did not increase significantly and the scale on alumi-num alloy heat exchanger tube was cleaned out. CaCO3 and CaSO4 scale on the aluminum alloy heat exchanger tubes can be ef-fectively removed by sulfamic acid as cleaning agent, and the corrosion inhibitor has obvious protective effect on aluminum al-loy so that good cleaning effect is obtained by field application.
引文
[1]尹建华,吕庆春,阮国岭.低温多效蒸馏海水淡化技术[J].海洋技术,2002,21(4):22-26.YIN Jian-hua,LV Qing-chun,RUAN Guo-ling.Low temperature multiple effect distillation for seawater desalination[J].Journal of ocean technology,2002,21(4):22-26.
    [2]万高杰,潘顺龙,韩旭,等.低磷阻垢剂在低温多效海水淡化过程中的应用[J].精细化工,2018,35(3):469-473.WAN Gao-jie,PAN Shun-long,HAN Xu,et al.Application of low phosphorus scale inhibitor in low-temperaturethermal seawater desalination[J].Fine chemicals,2018,35(3):469-473.
    [3]ALI A A,CHRISTOPHER M F.A comparative study of novel scale inhibitors with commercial scale inhibitors used in seawater desalination[J].Desalination,2015,359(5):22-25.
    [4]SUO G F,XIE L X,XU S C,et al.Study on inhibitors'performance under the condition of high concentration ratio in MED system[J].Desalination,2018,437(12):100-107.
    [5]陈飞,解利昕,杨继状,等.高浓缩倍率低温多效蒸馏海水淡化阻垢研究[J].化学工程,2015,43(12):21-24.CHEN Fei,XIE Li-xin,YANG Ji-zhuang,et al.Scale inhibition of low-temperature multi-effect distillation desonation under high centation ratio[J].Chemical engineering,2015,43(12):21-24.
    [6]张海春,王海增,阮国岭.热法海水淡化阻垢及清洗技术研究现状[J].中国给水排水,2008,24(16):12-16.ZHANG Hai-chun,WANG Hai-zeng,RUAN Guo-ling.Research status of scale prevention and cleaning techniques in thermal seawater desalination[J].China water&wastewater,2008,24(16):12-16.
    [7]张仲彬.换热表面污垢特性的研究[D].河北:华北电力大学,2009.ZHANG Zhong-bin.Study on fouling characteristics of heat exchange surfaces[D].Hebei:North China Electric Power University,2009.
    [8]乔宁.传热金属表面腐蚀结垢行为模拟及防腐阻垢技术研究[D].北京:北京化工大学,2010.QIAO Ning.Simulation of the corrosion and fouling behavior and technology of anticorrosion and antifouling on metallic heat transfer surface[D].Beijing:Beijing University of Chemical Technology,2010.
    [9]QI C H,HAN X,LV H Q,et al.Experimental study of heat transfer and scale formation of spiral grooved tube in the falling film distilled desalination[J].International journal of heat and mass transfer,2018,119(4):654-664.
    [10]马红杰,赵敏,黄新泉.冷却水换热器腐蚀泄漏分析及防护[J].石油化工腐蚀与防护,2016,33(1):26-29.MA Hong-jie,ZHAO Min,HUANG Xin-quan.Analysis of corrosion leakage of cooling water heat exchanger and prevention[J].Corrosion&protection in petrochemical industry,2016,33(1):26-29.
    [11]BRENNENSTUHL A M,GENDRON T S,CLELAND R.Mechanisms of under deposit corrosion in freshwater cooled austenitic alloy heat exchangers[J].Corrosion science,1993,35(1):699-705.
    [12]黄万启,赵兴辉,陈浩,等.凝汽器结垢和腐蚀原因及应对措施[J].腐蚀与防护,2018,39(1):55-58.HUANG Wan-qi,ZHAO Xing-hui,CHEN Hao,et al.Reason and solution for the corrosion and scaling of condenser[J].Corrosion and protection,2018,39(1):55-58.
    [13]唐智新,吴礼云,梁红英,等.低温多效蒸馏海水淡化蒸发器结垢原因分析及清洗[J].冶金动力,2015,23(9):61-65.TANG Zhi-xin,WU Li-yun,LIANG Hong-ying,et al.Cause analysis and cleaning of scaling in the LT-MEDseawater desalination evaporator[J].Metallurgical power,2015,23(9):61-65.
    [14]张瑞祥,刘慧娟,滕维忠.低温多效海水淡化设备的化学清洗[J].广州化工,2011,39(2):103-104.ZHANG Rui-xiang,LIU Hui-juan,TENG Wei-zhong.Chemical cleaning for low temperature multi-effect desalination facility[J].Guangzhou chemical industry,2011,39(2):103-104.
    [15]段培清.换热器在线防、除垢技术研究[D].浙江:浙江大学,2008.DUAN Pei-qing.Study on the on-line anti-scaling technology of heat exchanger[D].Zhejiang:Zhejiang University,2008.
    [16]吕昕宇.胶球在线清洗装置对冷水机组性能影响研究[D].天津:天津大学,2016.LYU Xin-yu.Study on the effect of rubber ball on water chiller performance[D].Tianjin:Tianjin University,2016.
    [17]王丽萍.基于结垢溶垢机理的换热器在线清洗技术研究[D].北京:北京化工大学,2017.WANG Li-ping.On-line cleaning technology of heat exchanger based on scale forming and dissolving mechanism[D].Beijing:Beijing University of Chemical Technology,2017.
    [18]曹杰玉,姚建涛,邓宇强.电站锅炉盐酸清洗中的腐蚀控制[J].腐蚀科学与防护技术,2005,17(2):125-127.CAO Jie-yu,YAO Jian-tao,DENG Yu-qiang.Corrosion control during acid pickling of boiler in power plant[J].Corrosion science and protection technology,2005,17(2):125-127.
    [19]代峰燕,邢爽,高庆珊,等.换热器管程自动化清洗装置研究现状与发展[J].北京石油化工学院学报,2017,25(4):30-35.DAI Feng-yan,XING Shuang,GAO Qing-shan,et al.Research status and development of automatic cleaning device for the tube of heat exchanger[J].Journal of Beijing Institute of Petro-chemical Technology,2017,25(4):30-35.
    [20]潘海鸿,龚建刚,陈琳,等.自适应多种群遗传算法的换热管清洗路径优化[J].机械设计与制造,2015,53(8):9-12.PAN Hai-hong,GONG Jian-gang,CHEN Lin,et al.Optimization of cleaning path for heat exchange tube based on an adaptive multiple-population genetic algorithms[J].Machinery design&manufacture,2015,53(8):9-12.
    [21]杨善让,孙灵芳,徐志明.换热设备污垢研究的现状和展望[J].化工进展,2004,24(10):1091-1098.YANG Shan-rang,SUN Ling-fang,XU Zhi-ming.Development and prospect of research on heat exchanger fouling[J].Chemical industry and engineering progress,2004,24(10):1091-1098.
    [22]王艳芝.盐酸介质中铝合金用复合缓蚀剂的研究[J].材料保护,2002,43(6):18-20.WANG Yan-zhi.A composite inhibitor for aluminum alloy in hydrochloric acid[J].Materials protection,2002,43(6):18-20.
    [23]NOOR E A.Evaluation of inhibitive action of some quaternary N-heterocyclic compounds on the corrosion of Al-Cu alloy in hydrochloric acid[J].Materials chemistry&physics,2009,114(2):533-541.
    [24]ECKERMANN F,SUTER T,UGGOWITZER P G,et al.The influence of MgSi particle reactivity and dissolution processes on corrosion in Al-Mg-Si alloys[J].Electrochimica acta,2008,54(2):844-855.
    [25]GUILLAUMIN V,MANKOWSKI G.Localized corrosion of 6056 T6 aluminium alloy in chloride media[J].Corrosion science,2000,42(1):105-125.
    [26]MA Y,ZHOU X,LIAO Y,et al.Localised corrosion in AA 2099-T83 aluminium-lithium alloy:The role of grain orientation[J].Corrosion science,2016,107(6):41-48.
    [27]ZHANG X,ZHOU X,HASHIMOTO T,et al.The influence of grain structure on the corrosion behaviour of2A97-T3 Al-Cu-Li alloy[J].Corrosion science,2017,116(2):14-21.
    [28]SHI Y Z,COLLINS L,BALKE N,et al.In-situ electrochemical-AFM study of localized corrosion of AlxCoCrFeNi high-entropy alloys in chloride solution[J].Applied surface science,2018,439(5):533-544.
    [29]LIAO J,HOTTA M.Corrosion products of field-exposed Mg-Al series magnesium alloys[J].Corrosion science,2016,112(11):276-288.
    [30]ANDREATTA F,APACHITEI I,KODENTSOV A A,et al.Volta potential of second phase particles in extruded AZ80 magnesium alloy[J].Electrochimica acta,2006,51(17):3551-3557.
    [31]YAO C Z,TAY S L,ZHU T P,et al.Effects of Mg content on microstructure and electrochemical properties of Zn-Al-Mg alloys[J].Journal of alloys and compounds,2015,645(10):131-136.
    [32]CASAJúS P,WINZER N.Electrochemical noise analysis of the corrosion of high-purity Mg-Al alloys[J].Corrosion science,2015,94(5):316-326.
    [33]SHAHIDI M,GHOLAMHOSSEINZADEH M R.Electrochemical evaluation of AA6061 aluminum alloy corrosion in citric acid solution without and with chloride ions[J].Journal of electroanalytical chemistry,2015,757(9):8-17.
    [34]陈跃良,王安东,张勇,等.Cl-和H+对2024-T3铝合金初期腐蚀的协同效应[J].材料导报,2018,32(9):1549-1556.CHEN Yue-liang,WANG An-dong,ZHANG Yong,et al.The synergistic effect of Cl-and H+on initial corrosion of2024-T3 aluminum alloy[J].Materials review,2018,32(9):1549-1556.
    [35]DEYAB M A.Corrosion inhibition of heat exchanger tubing material(titanium)in MSF desalination plants in acid cleaning solution using aromatic nitro compounds[J].Desalination,2018,439(1):73-79.
    [36]HODGKIESS T,Al-OMARI K H,BONTEM S N,et al.Acid cleaning of thermal desalination plant:do we need to use corrosion inhibitors[J].Desalination,2005,183(1):209-216.
    [37]XHANARI K,FIN?GAR M.Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions:A review[J].Arabian journal of chemistry,2016,26(8):1-18.
    [38]HASSAN M,IBRAHIM S M,TAKAGI H D,et al.Kinetics of corrosion inhibition of aluminum in acidic media by water-soluble natural polymeric chondroitin-4-sulfate as anionic polyelectrolyte inhibitor[J].Carbohydrate polymers,2018,192(7):356-363.
    [39]PRAKASHAIAHB G,KUMARA D V,PANDITH A A,et al.Corrosion inhibition of 2024-T3 aluminum alloy in3.5%NaCl by thiosemicarbazone derivatives[J].Corrosion science,2018,135(5):326-338.
    [40]全贞花,陈永昌,马重芳,等.碳酸钙于换热表面结垢影响因素的模拟分析[J].工程热物理学报,2008,29(11):1944-1946.QUAN Zhen-hua,CHEN Yong-chang,MA Chong-fang,et al.Simulation and analysis of influencing parameters on fouling process of calcium carbonate on heat transfer surface[J].Journal of engineering thermo physics,2008,29(11):1944-1946.
    [41]DORIANO B,FABIO L M,NGAI Y Y.Thermo dynamic analysis and energy efficiency of thermal desalination processes[J].Desalination,2018,425(2):29-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700