用户名: 密码: 验证码:
氨基化氧化石墨烯在水性防腐防火一体化涂料中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Application of Aminated Graphite Oxide for Waterborne Anti-corrosion and Fireproof Coatings
  • 作者:王娜 ; 陈俊声 ; 王树伟 ; 张静
  • 英文作者:WANG Na;CHEN Junsheng;WANG Shuwei;ZHANG Jing;School of Materials Science and Engineering,Shenyang University of Chemical Technology;
  • 关键词:材料失效与保护 ; 水性环氧树脂 ; 电化学阻抗谱 ; 氨基化氧化石墨烯 ; 防腐防火涂料
  • 英文关键词:materials failure and protection;;waterborne epoxy resin;;chemical impedance spectroscopy;;aminated graphene oxide;;anti-corrosion and fire-retardant coating
  • 中文刊名:CYJB
  • 英文刊名:Chinese Journal of Materials Research
  • 机构:沈阳化工大学材料科学与工程学院;
  • 出版日期:2018-10-25
  • 出版单位:材料研究学报
  • 年:2018
  • 期:v.32
  • 基金:辽宁省百千万人才工程([2017]62);; 辽财指高端人才([2016]864);; 沈阳市科技计划(17-51-6-00)~~
  • 语种:中文;
  • 页:CYJB201810001
  • 页数:9
  • CN:10
  • ISSN:21-1328/TG
  • 分类号:3-11
摘要
用Hummers法制备氧化石墨烯(GO),并用乙二胺对氧化石墨烯(GO)进行氨基化得到氨基化氧化石墨烯(NGO),将季戊四醇磷酸酯(PEPA)、三聚磷酸铝(ATP)与NGO三者复配并添加到水性环氧树脂中,制备出水性环氧防腐防火一体化涂料。使用IR、XRD、SEM等手段对GO和NGO的结构和形貌进行了表征。结果表明,已经制备出GO并成功地对其表面实现了氨基化改性。电化学测试、盐雾试验、耐火极限测试、残炭形貌分析和热失重分析的结果表明,颜基比P/B=0.2的复合涂层具有最佳的防腐性能和防火性能。
        The graphene oxide(GO) was prepared by the Hummers method, and then modified with ethylenediamine to obtain aminated graphene oxide(NGO). The anti-corrosion and fire-proof waterborne epoxy composite coating was prepared by adding pentaerythritol phosphate(PEPA), aluminum triphosphate(ATP) and NGO to the waterborne epoxy resin, and then applied on the surface of steel sheet by air spraying method. The structure and morphology of GO and NGO were characterized by IR, XRD and SEM. The performance in anti-resistance and fire-proof resistance of the prepared coatings with different color ratios(pigment/resin ratio: P/B) was further investigated by means of electrochemical test, salt spray test, fire resistance test, residual carbon morphology analysis and thermogravimetric analysis. The results show that the composite coating with the P/B ratio of 0.2 presents the best comprehensive performance in anti-resistance and fire-proof.
引文
[1]Wang D, Zhang H, Wang H J, et al. Preparation and performance study of a solvent free epoxy intumescent fire retardant coating for fire resistance to hydrocarbons[J]. Pain. Coat. Ind., 2010, 40(9):41(王丹,张晖,王华进等.户外耐烃类火灾无溶剂环氧膨账型防火涂料的制备及性能研究[J].涂料工业, 2010, 40(9):41)
    [2]Cui S W, Yin X Y, Yu Q L, et al. Polypyrrole nanowire/TiO2nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light[J]. Corros.Sci., 2015,(98):471
    [3]Wang Z Y, Han E H, Ke W. Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings[J]. Corros. Sci., 2007, 49(5):2237
    [4]Wang W J, Yang J Y. Influences of binder on fire protection and anticorrosion properties of intumescent fire resistive coating for steel structure[J]. Surf. Coat. Tech., 2010, 204(8):1186
    [5]Noorden. R. V. Moving towards a graphene world[J]. Nature, 2006,442(7100):228
    [6]Yu Z X, Di H H, Ma Y, et al. Preparation of graphene oxide modified by titanium dioxide to enhance the anti-corrosion performance of epoxy coatings[J]. Surf. Coat. Tech., 2015,(276):471
    [7]Liu X W, Wu W H, Qi Y X. Synthesis of a hybrid zinc hydroxystannate/reduction graphene oxide as a flame retardant and smoke suppressant of epoxy resin[J]. J. Therm. Anal. Calorim., 2016, 126(2):553
    [8]He Q Y, Herry Gunadi Sudibya, Yin Z Y, et al. Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films:Fabrication and Sensing Applications[J]. ACS Nano, 2010, 4(6):3201
    [9]Shen J F, Huang W S, Wu L P, et al. Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multiwalled carbon nanotubes[J]. Compos. Part. A-Appl. S, 2007, 38(5):1331
    [10]Katsuyuki Wakabayashi, Cynthia Pierre, Dmitriy A. Dikin, et al,Thillaiyan Ramanathan, L. Catherine Brinson, John M. Torkelson.Polymer-graphitenanocomposites:Effective dispersion and major property enhancement via solid-state shear pulverization[J]. Macromolecules, 2008, 41(6):1905
    [11]Merlyn X. Pulikkathara, Oleksandr V. Kuznetsov, Valery N. Khabashesku. Sidewall covalent functionalization of single wall carbon nanotubes through reactions of fluoronanotubes with urea,guanidine, and thiourea[J]. Chem. Mater., 2008, 20(8):2685
    [12]Hu Y Z, Shen J F, Li N, et al. Amino-functionalization of graphene sheets and the fabrication of their nanocomposites[J]. Polym.Composite., 2010, 31(12):1987
    [13]Joel L. Stevens, Aaron Y. Huang, Peng H Q, et al. Sidewall aminofunctionalization of single-walled carbon nanotubes through fluorination and subsequent reactions with terminal diamines[J]. Nano.Lett., 2003, 3(3):331
    [14]Shen J F, Huang W S, Wu L P, et al. Study on amino-functionalized multiwalled carbon nanotubes[J]. Mat. Sci. Eng. A-Struct,2007, 464(1-2):151
    [15]Liao S H, Polan Liu, Minchien Hsiao, et al. One-Step Reduction and Functionalization of Graphene Oxide with Phosphorus-Based Compound to Produce Flame-Retardant Epoxy Nanocomposite[J]. Ind.Eng. Chem. Res., 2012, 51(12):4573
    [16]Li Y F, Zhu J J, Gao X H, et al. Preparation of polyaniline microemulsion and anticorrosion performance of its composite coatings with versatatefluoro-acrylate emulsion[J]. Chin. J. Mater. Res.,2016, 30(2):131(李玉峰,祝晶晶,高晓辉等.聚苯胺微乳液的制备及与叔氟丙烯酸酯乳液复合涂层的防腐性能[J].材料研究学报, 2016, 30(2):131)
    [17]Wang N, Zhang Y N, Luan H H, et al. Preparation and anti-corrosion properties of waterborne epoxy coatings containing organic microspheres[J]. Chin. J. Mater. Res., 2017, 31(1):1(王娜,张义男,栾鸿赫等.有机微球填充水性环氧涂层的制备及其防腐性能[J].材料研究学报, 2017, 31(1):1)
    [18]Cai K W, Zuo S X, Luo S P, et al. Preparation of polyaniline/graphene composites with excellent anti-corrosion properties and their application in waterborne polyurethane anticorrosive coatings[J]. RSC. Adv., 2016, 6(98):95965
    [19]Chi-Hao Chang, Tsao-Cheng Huang, Chih-Wei Peng, et al. Novel anticorrosion coatings prepared from polyaniline/graphene composites[J]. Carbon, 2012, 50(14):5044
    [20]Tsao-Cheng Huang, Yu-An Su, Tzu-Chun Yeh, et al. Advanced anticorrosive coatings prepared from electroactive epoxy–SiO2hybrid nanocomposite materials[J]. Electrochim. Acta., 2011, 56(17):6142
    [21]Tzu-Chun Yeh, Tsao-Cheng Huang, Hsiu-Ying Huang, et al. Electrochemical investigations on anticorrosive and electrochromic properties of electroactive polyuria[J]. Polym. Chem., 2012, 3(8):2209
    [22]Tsao-Cheng Huang, Tzu-Chun Yeh, Hsiu-Ying Huang, et al. Electrochemical studies on aniline-pentamer-based electroactive polyimide coating:Corrosion protection and electrochromic properties[J]. Electrochim. Acta., 2011, 56(27):10151
    [23]Wang N, Zhang Y N, Chen J S, et al. Dopamine modified metal-organic frameworks on anti-corrosion properties of waterborne epoxy coatings[J]. Prog. Org. Coat., 2017, 109:126
    [24]Zhang L, Huo D X, Liu D Z, et al. Antirust behavior of aluminum triphosphate in water-borne latex coating[J]. Corros. Sci. Prot.Techno., 2004, 16(5):328(张丽,霍东霞,刘大壮等.三聚磷酸铝在水性乳胶涂层中的防锈机理研究[J].腐蚀科学与防护技术, 2004, 16(5):328)
    [25]Shi Y Q, Qian X D, Zhou K Q,. CuO/graphene nanohybrids:preparation and enhancement on thermal stability and smoke suppression of polypropylene[J]. Ind. Eng. Chem. Res., 2013, 52(38):13654
    [26]Wang Zhou. The preparation and the characterization of epoxy/graphene oxide nanocomposites[D]. Beijing:Beijing University of Chemical Technology, 2010(王舟.环氧树脂氧化石墨烯纳米复合材料的制备与表征[D].北京:北京化工大学, 2010)
    [27]Jiang S D, Bai Z M, Tang G, et al. Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites[J].Ind. Eng. Chem. Res., 2014, 53(16):6708

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700