用户名: 密码: 验证码:
湿式氧化降解高氯化工废水实验研究及经济性分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on wet air oxidation of high-chloride chemical wastewaters and economic analysis
  • 作者:李艳辉 ; 王树众 ; 孙盼盼 ; 杨闯 ; 王来升 ; 张拓 ; 郭洋
  • 英文作者:LI Yanhui;WANG Shuzhong;SUN Panpan;YANG Chuang;WANG Laisheng;ZHANG Tuo;GUO Yang;Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education,School of Energy and Power Engineering,Xi'an Jiaotong University;
  • 关键词:湿式氧化 ; 废水 ; 高氯化工废水 ; 废物处理 ; 镍基合金 ; 钛合金 ; 腐蚀 ; 经济性分析
  • 英文关键词:wet air oxidation;;wastewater;;high-chloride chemical wastewater;;waste treatment;;nickel alloy;;titanium alloy;;corrosion;;economic analysis
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:西安交通大学能源与动力工程学院热流科学与工程教育部重点实验室;
  • 出版日期:2017-05-05
  • 出版单位:化工进展
  • 年:2017
  • 期:v.36;No.308
  • 基金:国家自然科学基金(51406146);; 中国博士后科学基金(126540);; 江苏省自然科学基金(BK20140406);; 陕西省自然科学基金(BK20140406)项目
  • 语种:中文;
  • 页:HGJZ201705046
  • 页数:8
  • CN:05
  • ISSN:11-1954/TQ
  • 分类号:357-364
摘要
高氯化工废水污染物浓度高、腐蚀性极强是工业废水处理的一大难点。本文研究了温度、停留时间、催化剂Fe~(2+)含量对湿式氧化去除该废水总有机碳(TOC)的影响规律,以及最优反应温度+20℃下候选材料的腐蚀特性;并据此进行了综合处理工艺构建及其经济性评估。结果表明:最佳处理工况(温度280℃、停留时间60 min、催化剂Fe~(2+)量100mg/L)下TOC去除率高达97.9%。300℃、pH=13时,镍基合金N10276与N06625发生严重腐蚀,其可归结为氧化性强碱溶液中铬、钼的过钝化溶解,固态镍氧化物或者氢氧化物的碱性溶解以及高浓度氯根对保护性氧化膜的攻击破坏;钛合金TA10表面氧化膜的轻微破坏主要源自溶液的强碱性诱发钛氧化物溶解。废水pH下调至7.5时,各合金腐蚀程度减弱,且TA10呈现出令人满足的抗蚀性能。针对该高氯化工废水,30 t/d湿式氧化综合处理工艺的总投资2078万元,处理费用470.2元/t废水。
        High-chloride chemical wastewaters with higher organics concentration and strong causticity,is a great challenge in industrial wastewater treatment. We have investigated the effects of reaction temperatures,residence time,and catalyst Fe~(2+) content on TOC removal of the wastewater during wet air oxidation,and corrosion characteristics of candidate materials under atmospheres higher 20 oC than obtained optimal reaction temperature. On the basis of the above research,a comprehensive treatment process for this wastewater was also built. The results showed that a residence time of 60 min,a reaction temperature of 280℃,and catalyst Fe~(2+) amount of 100 mg/L was the optimum set of technological parameters for the degradation of the high-chloride chemical wastewater,under which the TOC removal rate was as high as 97.9%. For condition of 300℃,pH=13,nickel alloys(N10276 and N06625)suffered serious corrosion due to trans-passivation dissolution of alloying elements such as chromium and molybdenum in strong oxidizing & alkaline solutions,alkaline dissolution of solid nickel oxides or hydroxides,along with attacks of chloride ions against protective oxides film produced on alloys surface,while surface damage of titanium alloy TA10 also occurred,which mainly derived from strong alkalinity of environmental mediums(pH=13)causing chemical dissolution of the protective titanium oxides.If initial pH value of the corrosion media was adjusted to about 7.5,the corrosion rate of three alloys decreased obviously,and alloy TA10 showed satisfactory corrosion resistance.The economic analysis of wet air oxidation process for the high-chloride chemical wastewater with a capacity of 30 tons per day,indicated that the project total investment is 20.78million Yuan,while the wastewater processing cost is 470.2 Yuan per ton.
引文
[1]李云,袁志文.催化湿式氧化处理高浓度有机废水的研究进展[J].安徽农业科学,2013(13):5903-5905.LI Y,YUAN Z W.Research progress on catalytic wet air oxidation for treating highly concentrated wastewater[J].Journal of Anhui Agri.Sci.,2013(13):5903-5905.
    [2]KYZAS G.Wet air oxidation for the decolorization of dye wastewater:an overview of the last two decades[J].Chinese Journal of Catalysis,2014,35(1):1-7.
    [3]HII K,BAROUTIAN S,PARTHASARATHY R,et al.A review of wet air oxidation and thermal hydrolysis technologies in sludge treatment[J].Bioresource Technology,2014,155:289-299.
    [4]ARENA F,DI CHIO R,GUMINA B,et al.Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters[J].Inorganica Chimica Acta,2015,431:101-109.
    [5]王冰.湿式氧化法处理丙烯腈废水的反应特性研究[D].大庆:东北石油大学,2014.WANG B.Study on characteristics of acrylonitrile wastewater in wet oxidation[D].Daqing:Northeast Petroleum University,2014.
    [6]柏亚成,陈晔.高浓度苯酚废水的均相催化湿式氧化研究[J].现代化工,2015,35(6):136-140.BAI Y C,CHEN Y.Study on catalytic wet air oxidation of high-strength phenol wastewater[J].Modern Chemical Industry,2015,35(6):136-140.
    [7]邹寒,王树涛,尤宏,等.湿式过氧化氢催化氧化降解喹啉及其机理[J].化工学报,2014,65(11):4400-4405.ZOU H,WANG S T,YOU H,et al.Catalytic wet peroxide oxidation for the degradation of quinolone[J].CIESC Journal,2014,65(11):4400-4405.
    [8]杨少霞,冯玉杰,蔡伟民,等.负载型湿式氧化催化剂Ru O2/γ-Al2O3活性与稳定性[J].化工学报,2003,54(9):1240-1245.YANG S X,FENG Y J,CAI W M,et al.Activity and stability of Ru O2/γ-Al2O3 catalyst in wet air oxidation[J].CIESC Journal,2003,54(9):1240-1245.
    [9]苏雷,张文文.高级氧化法在制药废水处理中的应用[J].建筑与预算,2016(1):21-24.SU L,ZHANG W W.Application of advanced oxidation process in the pharmaceutical wastewater treatment[J].Construct and Budget,2016(1):21-24.
    [10]宋冠军.Ti/Ir O2-Ru O2电化学法处理高氯有机废水的研究[D].北京:北京有色金属研究总院,2012.SONG G J.The study on the treatment of organic wastewater containing high concentration of chloride iron by Ti/Ir O2-Ru O2[D].Beijing:General Research Institute for Nonferrous Metals,2012.
    [11]帅晓丹.甘油法环氧氯丙烷高盐废水处理技术研究[D].上海:华东理工大学,2014.SHUAI X D.Treatment the high salinity wastewater generated during epichlorohydrin synthesis with glycerol[D].Shanghai:East China University of Science and Technology,2014.
    [12]KRITZER P,BOUKIS N,DINJUS E.Corrosion of alloy 625 in aqueous solutions containing chloride and oxygen[J].Corrosion,1998,54(10):824-834.
    [13]KRITZER P.Corrosion in high-temperature and supercritical water and aqueous solutions:a review[J].Journal of Supercritical Fluids,2004,29(1/2):1-29.
    [14]COOK W G,OLIVE R P.Pourbaix diagrams for the iron-water system extended to high-subcritical and low-supercritical conditions[J].Corrosion Science,2012,55:326-331.
    [15]COOK W G,OLIVE R P.Pourbaix diagrams for chromium,aluminum and titanium extended to high-subcritical and low-supercritical conditions[J].Corrosion Science,2012,58:291-298.
    [16]TANG X,WANG S,XU D,et al.Corrosion behavior of Ni-based alloys in supercritical water containing high concentrations of salt and oxygen[J].Industrial&Engineering Chemistry Research,2013,52(51):18241-18250.
    [17]PHENIX B D,DINARO J L,TESTER J W,et al.The effects of mixing and oxidant choice on laboratory-scale measurements of supercritical water oxidation kinetics[J].Industrial&Engineering Chemistry Research,2002,41(3):624-631.
    [18]BUXTON G V,GREENSTOCK C L,HELMAN W P,et al.Critical review of rate constants for reactions of hydrated electrons,hydrogen atoms and hydroxyl radicals(?OH/?O)in aqueous solution[J].Journal of Physical and Chemical Reference Data,1988,17(2):513-886.
    [19]LI Y,WANG S,TANG X,et al.Effects of sulfides on the corrosion behavior of inconel 600 and incoloy 825 in supercritical water[J].Oxidation of Metals,2015,84(5):509-526.
    [20]TANG X Y,WANG S Z,QIAN L L,et al.Corrosion behavior of nickel base alloys,stainless steel and titanium alloy in supercritical water containing chloride,phosphate and oxygen[J].Chemical Engineering Research&Design,2015,100:530-541.
    [21]李艳辉,王树众,任萌萌,等.超临界水热燃烧技术研究及应用进展[J].化工进展,2016,35(7):1942-1955.LI Y H,WANG S Z,REN M M,et al.Recent advances on research and application on supercritical hydrothermal combustion technology[J].Chemical Industry and Engineering Progress,2016,35(7):1942-1955.
    [22]BARBIER-JR J,DELANOE F,JABOUILLE F,et al.Total oxidation of acetic acid in aqueous solutions over noble metal catalysts[J].Journal of Catalysis,1998,177(2):378-385.
    [23]KRITZER P,BOUKIS N,DINJUS E.The corrosion of nickel-base alloy 625 in sub-and supercritical aqueous solutions of oxygen:a long time study[J].Journal of Materials Science Letters,1999,18(22):1845-1847.
    [24]KRITZER P.Die Korrosion der Nickel-Basis-Legierung 625 unter hydrothermalen Bedingungen[D].Karlsruhe:Forschungszentrum Karlsruhe Technik und Umwelt,1998.
    [25]FUJII T,SUE K,KAWASAKI S.Effect of pressure on corrosion of Inconel 625 in supercritical water up to 100 MPa with acids or oxygen[J].Journal of Supercritical Fluids,2014,95:285-291.
    [26]COOK W G,OLIVE R P.Pourbaix diagrams for the nickel-water system extended to high-subcritical and low-supercritical conditions[J].Corrosion Science,2012,58:284-290.
    [27]BEVERSKOG B,PUIGDOMENECH I.Revised pourbaix diagrams for Nickel at 25–300℃[J].Corrosion Science,1997,39(5):969-980.
    [28]龙克昌.钛的腐蚀数据[J].稀有金属合金加工,1981(4):84-85.LONG K C.Corrosion data of titanium[J].Rare Metal Materials and Engineering,1981(4):84-85.
    [29]樊春升.钛及其合金在氯化钠溶液中的腐蚀[J].氯碱工业,2015,51(4):38-39,42.PAN C S.Corrosion of titanium and its alloys in sodium chloride solution[J].Chlor–Alkali Industry,2015,51(4):38-39,42.
    [30]POPA M V,DEMETRESCU I,VASILESCU E,et al.Corrosion susceptibility of implant materials Ti-5Al-4V and Ti-6Al-4Fe in artificial extra-cellular fluids[J].Electrochimica Acta,2004,49(13):2113-2121.
    [31]FOY B R,WALDTHAUSEN K,SEDILLO M A,et al.Hydrothermal processing of chlorinated hydrocarbons in a titanium reactor[J].Environmental Science&Technology,1996,30(9):2790-2799.
    [32]曹国民,刘勇弟,盛梅,等.高盐废水资源化处理方法:ZL201210199557.3[P].2012-09-26.CAO G M,LIU Y D,SHENG M,et al.The recycling treatment of high-salt wastewaters:ZL201210199557.3[P].2012-09-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700