用户名: 密码: 验证码:
施用生物质炭对土壤Cd、Pb有效性影响的整合分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A meta-analysis of effects of biochar application on the availability of Cd and Pb in soils
  • 作者:黄敏 ; 刘茜 ; 朱楚仪 ; 黄鑫 ; 童雄 ; 杨列
  • 英文作者:HUANG Min;LIU Xi;ZHU Chuyi;HUANG Xin;TONG Xiong;YANG Lie;School of Resources and Environmental Engineering, Wuhan University of Technology;
  • 关键词:生物质炭 ; 土壤重金属 ; 钝化 ; 整合分析
  • 英文关键词:biochar;;heavy metals in soil;;immobilization;;meta-analysis
  • 中文刊名:HJXX
  • 英文刊名:Acta Scientiae Circumstantiae
  • 机构:武汉理工大学资源与环境工程学院;
  • 出版日期:2018-08-29 15:08
  • 出版单位:环境科学学报
  • 年:2019
  • 期:v.39
  • 基金:“十三五”国家重点研发计划专项(No.2018YFD0800502);; 中国留学基金委资助项目(No.201406955019)
  • 语种:中文;
  • 页:HJXX201902032
  • 页数:10
  • CN:02
  • ISSN:11-1843/X
  • 分类号:285-294
摘要
大量研究表明生物质炭施用可改变重金属在土壤中的生物有效性,但这种影响取决于土壤理化性质、生物质炭的种类与施用量等.本文以公开发表的81篇有关生物质炭与土壤重金属有效性的研究论文为基础进行归纳整理,采用数据整合分析方法,从土壤性质、生物质炭的特性与施用量等方面量化了生物质炭对土壤有效态Cd、Pb的影响.结果显示,与不施用生物质炭处理相比,施用生物质炭对土壤中Cd和Pb均具有显著的钝化效果,其有效态含量平均降低了37.59%和51.37%.其中,生物质炭对不同质地土壤Cd、Pb钝化效果表现为:砂质土壤>壤质土壤>粘质土壤,且生物质炭施用可使砂质土壤中有效态Cd、Pb平均降低47.18%和57.82%;生物质炭施用对弱酸性土壤Cd、Pb的钝化效果均最佳,弱酸性土壤Cd、Pb有效态含量平均降幅分别为50.05%和58.60%,略高于中性土壤,明显高于碱性土壤.从生物质炭类型看,壳渣类生物质炭施用使土壤有效态Cd、Pb降幅最大,分别为58.44%和71.28%;在500~600℃的温度区间下制备获取的生物质炭可使土壤有效态Cd、Pb显著降低52.23%和60.90%;当生物质炭pH在7~8,土壤中Cd的有效态含量降低了71.93%,当生物质炭pH小于7时,有效态Pb降幅最大为61.88%.另外,土壤Cd、Pb的钝化效果随着生物质炭施用量的增加而提高,当生物质炭施用量大于5%时,Cd、Pb有效态的降幅最大,分别达到54.41%和77.47%.可见,在选择生物质炭来修复重金属污染土壤时,应根据土壤性质来选择适宜的生物质炭种类及其施用量,以达到更好的钝化效果.
        A large number of studies have shown that the application of biochar can change the bioavailability of heavy metals in soils, but this effect varies with soil property, biochar type and dosage. In this paper, the effects of biochar on the availability of Cd and Pb in soil were quantified using the meta-analysis method, based on 81 published papers investigating heavy metals availability in soils by applying biochar. The results showed that the biochar had a significant immobilization effect on the availability of Cd and Pb in soils. Compared to the control(without biochar application),the contents of available Cd and Pb were decreased by 37.59% and 51.37% on average, respectively. When the biochar was added into with different texture, the immobilization of Cd and Pb was descended in the following order: sandy>loamy>clay. Specifically, the contents of available Cd and Pb in sandy soils were decreased by 47.18% and 57.82%, respectively. In addition, the best immobilization effects were found in the weakly acidic soil with an average reduction of 50.05% and 58.60% for Cd and Pb, respectively, which was slightly higher than that in the neutral soil but significantly higher than that in the alkaline soil. Among all the biochar types, the shell-and residue-derived biochars were the most effective one in reducing available Cd and Pb in soils, i.e., by 58.44% and 71.28%, respectively. Biochar produced under pyrolysis temperature ranging from 500 ℃ to 600 ℃ can significantly reduce available Cd and Pb in soils by 52.23% and 60.90%, respectively. The contents of available Cd were decreased by 71.93% with the biochar pH value between 7 and 8 while the available Pb was decreased by 61.88% when the biochar pH was lower than 7. Moreover, the immobilization of soil Cd and Pb was enhanced with increased biochar dosage, e.g., the maximum reductions in available Cd and Pb were observed when the biochar dosage was more than 5%, achieving a reduction of 54.41% and 77.47% for Cd and Pb, respectively. Therefore, the suitable type and dosage of biochar should be selected according to the soil property in the remediation of soils polluted by heavy metals.
引文
Adams D C, Gurevitch J, Rosenberg M S. 1997. Resampling tests foe meta-analysis of ecological data[J]. Ecology, 78(4): 1277-1283
    Ahmad M, Ok Y S, Kim B Y, et al. 2016. Impact of soybean stover- and pine needle-derived biochars on Pb and As mobility, microbial community, and carbon stability in a contaminated agricultural soil[J]. Journal of Environmental Management, 166: 131-139
    Al-Wabel M, Usman A R A, El-Naggar A H, et al. 2015. Conocarpus biochar as a soil amendment for reducing heavy metal availability and uptake by maize plants[J]. Saudi Journal of Biological Sciences, 22(4): 503-511
    Biederman L A, Harpole W S. 2013. Biochar and its effects on plant productivity and nutrient cycling: A meta-analysis[J]. Global Change Biology Bioenergy, 5(2): 202-214
    蔡岸冬, 张文菊, 杨品品, 等. 2015. 基于 Meta-Analysis 研究施肥对中国农田土壤有机碳及其组分的影响[J]. 中国农业科学, 48(15): 2995-3004
    Chen D, Liu X Y, Bian R J, et al. 2018. Effects of biochar on availability and plant uptake of heavy metals: A meta-analysis[J]. Journal of Environmental Management, 222: 76-85
    Chen H Y, Teng Y G, Lu S J, et al. 2015. Contamination features and health risk of soil heavy metals in China[J]. Science of the Total Environment, 512-513: 143-153
    Czeka?a W, Malińska K, Cáceres R, et al. 2016. Co-composting of poultry manure mixtures amended with biochar- The effect of biochar on temperature and C-CO2 emission[J]. Bioresource Technology, 200: 921-927
    董爱琴, 谢杰, 刘佳, 等. 2017. 土壤重金属钝化材料生物炭的研究进展[J]. 环境污染与防治, 39(3): 319-325
    范珍珍, 王鑫, 王超, 等. 2018. 整合分析氮磷添加对土壤酶活性的影响[J]. 应用生态学报, 29(4): 1266-1272
    Fang S S, Tsang D, Zhou F S, et al. 2016. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar[J]. Chemosphere, 149: 263-271
    高瑞丽, 朱俊, 汤帆, 等. 2016. 水稻秸秆生物炭对镉、铅复合污染土壤中重金属形态转化的短期影响[J]. 环境科学学报, 36(1): 251-256
    郭明, 李新. 2009. Meta分析及其在生态环境领域研究中的应用[J]. 中国沙漠, 29(5): 911-919
    郭利敏, 艾绍英, 唐明灯, 等. 2010. 不同改良剂对镉污染土壤中小白菜吸收镉的影响[J]. 中国生态农业学报, 18(3): 654-658
    勾芒芒, 屈忠义, 杨晓, 等. 2014. 生物质炭对砂壤土节水保肥及番茄产量的影响研究[J]. 农业机械学报, 45(1): 136-142
    Geisseler D, Linquist B A, Lazicki P A. 2017. Effect of fertilization on soil microorganisms in paddy rice systems: A meta-analysis[J]. Soil Biology and Biochemistry, 115: 452-460
    环境保护部, 国土资源部. 2014. 全国土壤污染状况调查公报[R]. http://www.zhb.gov.cn/gkml/hbb/qt/201404/t20140417_270670.htm
    Houben D, Evrard L, Sonnet P. 2013. Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd,Pb and Zn and the biomass production of rapeseed (Brassica napus L.)[J]. Biomass and Bioenergy, 57: 196-204
    Huang L M, Yu G W, Cai Y, et al. 2017. Immobilization of Pb, Cd, Cu and Zn in a Multi-Metal Contaminated Acidic Soil using Inorganic Amendment Mixtures[J]. International Journal of Environmental Research, 11(4): 425-437
    Igalavithana A D, Lee S E, Lee Y H, et al. 2017. Heavy metal immobilization and microbial community abundance by vegetable waste and pine cone biochar of agricultural soils[J]. Chemosphere, 174: 593-603
    Karer J, Zehetner F, Dunst G, et al. 2018. Immobilisation of metals in a contaminated soil with biochar-compost mixtures and inorganic additives: 2-year greenhouse and field experiments[J]. Environmental Science and Pollution Research, 25(3): 2506-2516
    Kim H S, Kim K R, Kim H J, et al. 2015. Effect of biochar on heavy metal immobilization and uptake by lettuce (Lactuca sativa L.) in agricultural soil[J]. Environmental Earth Sciences, 74(2): 1249-1259
    Kiran Y K, Barkat A, Cui X Q, et al. 2017. Cow manure and cow manure-derived biochar application as a soil amendment for reducing cadmium availability and accumulation by Brassica chinensis L. in acidic red soil[J]. Journal of Integrative Agriculture, 16(3): 725-734
    雷相东, 彭长辉, 田大伦,等. 2006. 整合分析(Meta-analysis)方法及其在全球变化中的应用研究[J]. 科学通报, 51(22): 2587-2597
    林珈羽, 张越, 刘沅, 等. 2016. 不同原料和炭化温度下制备的生物炭结构及性质[J]. 环境工程学报, 10(6): 3200-3206
    Lehmann A, Veresoglou S D, Leifheit E F, et al. 2014. Arbuscular mycorrhizal influence on zinc nutrition in crop plants: A meta-analysis[J]. Soil Biology and Biochemistry, 69: 123-131
    Li Y, Chang S X, Tian L H, et al. 2018. Conservation agriculture practices increase soil microbial biomass carbon and nitrogen in agricultural soils: A global meta-analysis[J]. Soil Biology and Biochemistry, 121: 50-58
    Liang J, Yang Z X, Tang L, et al. 2017. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost[J]. Chemosphere, 181: 281-288
    Liu Z, Demisie W, Zhang M. 2013. Simulated degradation of biochar and its potential environmental implication[J]. Environmental Pollution, 179(179C): 146-152
    毛懿德, 铁柏清, 叶长城, 等. 2015. 生物炭对重污染土壤镉形态及油菜吸收镉的影响[J]. 生态与农村环境学报, (4): 579-582
    Meng J, Tao M M, Wang L L, et al. 2018. Changes in heavy metal bioavailability and speciation from a Pb-Zn mining soil amended with biochars from co-pyrolysis of rice straw and swine manure[J]. Science of the Total Environment, 633: 300-307
    Ning D F, Liang Y C, Song A, et al. 2016. In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer[J]. Environmental Science and Pollution Research, 23(23): 23638-23647
    彭少麟, 郑凤英. 1999. Meta分析及MetaWin软件[J]. 生态环境学报, (4): 295-299
    卜晓莉, 薛建辉. 2014. 生物炭对土壤生境及植物生长影响的研究进展[J]. 生态环境学报, 23(3): 535-540
    尚二萍, 张红旗, 杨小唤, 等. 2017. 我国南方四省集中连片水稻田土壤重金属污染评估研究[J]. 环境科学学报, 37(4): 1469-1478
    孙向阳. 2005. 土壤学[M]. 北京: 中国林业出版社
    Shen X, Huang D Y, Ren X F, et al. 2016. Phytoavailability of Cd and Pb in crop straw biochar amended soil is related to the heavy metal content of both biochar and soil[J]. Journal of Environmental Management, 168, 245-251
    Song X D, Xue X Y, Chen D Z, et al. 2014. Application of biochar from sewage sludge to plant cultivation: in?uence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation[J]. Chemosphere, 109: 213-220
    王红, 夏雯, 卢平, 等. 2017. 生物炭对土壤中重金属铅和锌的吸附特性[J]. 环境科学, 38(9): 3944-3953
    吴伟祥, 孙雪, 董达, 等. 2015. 生物质炭土壤环境效应[M]. 北京: 科学出版社
    吴舒尧, 黄姣, 李双成. 2017. 不同生态恢复方式下生态系统服务与生物多样性恢复效果的整合分析[J]. 生态学报, 37(20): 6986-6999
    Wu S H, He H J, Inthapanya X, et al. 2017. Role of biochar on composting of organic wastes and remediation of contaminated soils — a review[J]. Environmental Science and Pollution Research, 24(20): 16560-16577
    肖婧, 徐虎, 蔡岸冬, 等. 2017. 生物质炭特性及施用管理措施对作物产量影响的整合分析[J]. 中国农业科学, 50(10): 1827-1837
    Xu W F, Yuan W P. 2017. Responses of microbial biomass carbon and nitrogen to experimental warming: A meta-analysis[J]. Soil Biology and Biochemistry, 115: 265-274
    袁帅, 赵立欣, 孟海波, 等. 2016. 生物炭主要类型、理化性质及其研究展望[J]. 植物营养与肥料学报, 22(5): 1402-1417
    Yuan J H, Xu R K, Zhang H. 2011. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 102(3): 3488-3497
    张小敏, 张秀英, 钟太洋, 等. 2014. 中国农田土壤重金属富集状况及其空间分布研究[J]. 环境科学, 35(2): 692-703
    Zhang G X, Guo X F, Zhao Z H, et al. 2016. Effects of biochars on the availability of heavy metals to ryegrass in an alkaline contaminated soil[J]. Environmental Pollution, 218: 513-522
    Zhang R H, Li Z G, Liu X D, et al. 2017. Immobilization and bioavailability of heavy metals in greenhouse soils amended with rice straw-derived biochar[J]. Ecological Engineering, 98: 183-188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700